Skip to main content

Basic Principles of Bioconversions in Anaerobic Digestion and Methanogenesis

  • Chapter
Biomass Conversion Processes for Energy and Fuels

Abstract

In methane fermentation, organic matter is anaerobically degraded to CO2 and CH4 with only a relatively small yield of microbial cells.(1,2) Thus, a large amount of organic matter is destroyed, but about 90% of the energy available in the substrate is retained in the easily purified gaseous product, CH4. Methane fermentation is very important in the recycling of carbon and other elements in nature and has long been used for the stabilization of sewage wastes. Its potential for converting biomass resources such as animal manures and other agricultural residues and municipal refuse into the energy-rich fuel, CH4, has only recently been fully appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. L. McCarty, in: Principles and Applications in Aquatic Microbiology (H. Henkelekian and N. C. Dondero, eds.), John Wiley and Sons, Inc., New York (1964), pp. 314–343.

    Google Scholar 

  2. P. L. McCarty, Public Works 95, 107–112 (1964).

    CAS  Google Scholar 

  3. M. P. Bryant, J. Anim. Sci. 48, 193–201 (1979).

    CAS  Google Scholar 

  4. M. P. Bryant, in: Microbial Energy Conversion (H. G. Schlegel and J. Barnea, eds.), Verlag Enrich Gotze KG, Göttingen (1976), pp. 107–118.

    Google Scholar 

  5. P. W. Hobson, S. Bousfield, and R. Summers, in: CRC Critical Reviews in Environmental Control, Chemical Rubber Company, Cleveland (1974), pp. 131–191.

    Google Scholar 

  6. R. A. Mah, D. M. Ward, L. Baresi and T. L. Glass, Ann. Rev. Microbiol. 31, 309–341 (1977).

    Article  CAS  Google Scholar 

  7. S. H. Zinder and R. A. Mah, in: Abstracts of the Annual Meeting of the American Society for Microbiology, 15, American Society for Microbiology, Washington D.C. (1979), p. 95.

    Google Scholar 

  8. H. A. Barker, Bacterial Fermentations, John Wiley and Sons, Inc., New York (1956).

    Google Scholar 

  9. M. P. Bryant, E. A. Wolin, M. J. Wolin, and R. S. Wolfe, Arch. Mikrobiol. 59, 20–31 (1967).

    Article  CAS  Google Scholar 

  10. W. E. Balch, S. Schoberth, R. S. Tanner, and R. S. Wolfe, Int. J. Syst. Bacteriol. 27, 355–361 (1977).

    Article  CAS  Google Scholar 

  11. K. Ohwaki and R. E. Hungate, Appl. Environ. Microbiol. 33, 1270–1274 (1977).

    CAS  Google Scholar 

  12. S. Schoberth, Arch. Microbiol. 114, 143–148 (1977).

    Article  CAS  Google Scholar 

  13. R. E. Hungate, The Rumen and Its Microbes, Academic Press, New York (1966).

    Google Scholar 

  14. R. S. Wolfe, in: Microbial Biochemistry, Vol. 21 (J. R. Quayle, ed.), University Park Press, Baltimore, Maryland (1979), pp. 267–300.

    Google Scholar 

  15. W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe, Microbiol. Rev. 43, 260–296 (1979).

    CAS  Google Scholar 

  16. J. G. Zeikus, Bacteriol. Rev. 41, 514–541 (1977).

    CAS  Google Scholar 

  17. M. P. Bryant, S. F. Tzeng, I. M. Robinson, and A. E. Joyner, in: Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105, American Chemical Society, Washington D.C. (1971), pp. 23–40.

    Book  Google Scholar 

  18. A. J. B. Zehnder and K. Wuhrmann, Arch. Microbiol. 111, 199–205 (1977).

    Article  CAS  Google Scholar 

  19. A. Wellinger and K. Wuhrmann, Arch. Microbiol. 115, 13–17 (1977).

    Article  CAS  Google Scholar 

  20. L. Baresi, R. A. Mah, D. M. Ward, and I. R. Kaplan, Appl. Environ. Microbiol. 36, 187–197 (1978).

    Google Scholar 

  21. P. O. Mountfort, Biochem. Biophys. Res. Commun. 85, 1346–1351 (1979).

    Article  Google Scholar 

  22. H. J. Doddema, T. J. Hutten, C. van der Drift, and G. O. Vogels, J. Bacteriol. 136, 19–23 (1978).

    CAS  Google Scholar 

  23. C. R. Woese and G. E. Fox, Proc. Natl. Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  Google Scholar 

  24. G. E. Fox, L. J. Magnum, W. E. Balch, R. S. Wolfe, and C. R. Woese Proc. Natl. Acad. Sci. USA 74, 4537–4541 (1977).

    Article  CAS  Google Scholar 

  25. O. Kandier and H. König, Arch. Microbiol. 118, 141–152 (1978).

    Article  Google Scholar 

  26. T. G. Tornabene and T. A. Langworthy, Science 203, 51–53 (1979).

    Article  CAS  Google Scholar 

  27. A. J. B. Zehnder and B. Huser, personal communication.

    Google Scholar 

  28. R. K. Thauer, K. Jugerman, and K. Decker, Bacteriol. Rev. 41, 100–180 (1977).

    CAS  Google Scholar 

  29. R. E. Hungate, W. Smith, T. Bauchop, I. Yu, and J. C. Rabinowitz, J. Bacteriol. 102, 389–397 (1970).

    CAS  Google Scholar 

  30. H. F. Kasper and K. Wuhrmann, Appl. Environ. Microbiol. 36, 1–7 (1978).

    Google Scholar 

  31. R. F. Strayer and J. M. Tiedje, Appl. Environ. Microbiol. 36, 330–340 (1978).

    CAS  Google Scholar 

  32. R. E. Hungate, Arch. Mikrobiol. 59, 158–164 (1967).

    Article  CAS  Google Scholar 

  33. P. H. Smith and R. A. Mah, Appl. Microbiol. 14, 368–371 (1965).

    Google Scholar 

  34. J. S. Jerris and R. L. McCarty, J. Water Pollut. Control Fed. 37, 178–192 (1965).

    Google Scholar 

  35. T. E. Cappenberg and R. A. Prins, Antonie van Leeuwenhoek; J. Microbiol. Serol. 40, 457–469 (1974).

    Article  CAS  Google Scholar 

  36. A. W. Lawrence and P. L. McCarty, J. Water Pollut. Control Fed. 41 (pt. 2), R1–R17 (1969).

    CAS  Google Scholar 

  37. R. A. Mah, M. R. Smith, and L. Baresi, Appl. Environ. Microbiol. 35, 1174–1184 (1978).

    CAS  Google Scholar 

  38. M. R. Smith and R. H. Mah, Appl. Environ. Microbiol. 36, 870–879 (1978).

    CAS  Google Scholar 

  39. L. van der Berg, G. B. Patel, D. S. Clark and C. P. Lentz, Can. J. Microbiol. 22, 1312–1319 (1976).

    Article  Google Scholar 

  40. H. Hippe, D. Caspari, K. Fiebig, and G. Gottschalk, Proc. Natl. Acad. Sci. USA 76, 494–498 (1979).

    Article  CAS  Google Scholar 

  41. S. H. Zinder and T. D. Brock, Nature 273 (5659), 226–228 (1978).

    Article  CAS  Google Scholar 

  42. D. F. Toerien and W. H. J. Hattingh, Water Res. 3, 385 (1969).

    Article  CAS  Google Scholar 

  43. R. H. McBee, Bacterial Rev. 14, 51–63 (1951).

    Google Scholar 

  44. R. A. Leedle, M.S. Thesis, University of Illinois, Urbana, Illinois (1977).

    Google Scholar 

  45. M. P. Bryant, Fed. Proc. 32, 1809–1813 (1973).

    CAS  Google Scholar 

  46. M. P. Bryant, Am. J. Clin. Nutr. 27, 1313–1319 (1974).

    CAS  Google Scholar 

  47. R. A. Prins, in: Microbial Ecology of the Gut (R. T. J. Clark and T. Bauchop, eds.), Academic Press, New York (1977), pp. 73–183.

    Google Scholar 

  48. M. P. Bryant, in: Duke’s Physiology of Domestic Animals (M. J. Sevenson, ed.), Cornell University Press, Ithaca, New York (1977), pp. 287–304.

    Google Scholar 

  49. J. E. Wolt and M. P. Bryant, unpublished results.

    Google Scholar 

  50. C. C. Scheifinger and M. J. Wolin, Appl. Microbiol. 26, 789–795 (1973).

    CAS  Google Scholar 

  51. M. J. Wolin, Am. J. Clin. Nutr. 27, 1320–1328 (1974).

    CAS  Google Scholar 

  52. S. R. Edsden, M. G. Hilton, and J. M. Waller, Arch. Microbiol. 107, 283–288 (1976).

    Article  Google Scholar 

  53. M. P. Bryant, L. L. Campbell, C. A. Reddy, and M. R. Crabill, Appl. Environ. Microbiol. 33, 1162–1169 (1977).

    CAS  Google Scholar 

  54. M. J. Mclnerney and M. P. Bryant, in: Abstracts of the Annual Meeting of the American Society for Microbiology, Section 143, American Society for Microbiology, Washington, D.C. (1978), p. 88.

    Google Scholar 

  55. C. P. Chynoweth and R. A. Mah, in: Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105 (R. F. Gould, ed.), American Chemical Society, Washington, D.C. (1971), pp. 41–54.

    Chapter  Google Scholar 

  56. D. R. Boone and P. H. Smith, in: Abstracts of the Annual Meeting of the American Society for Microbiology, Q82, American Society for Microbiology, Washington, D.C. (1978), p. 208.

    Google Scholar 

  57. M. J. Mclnerney, M. P. Bryant, and N. Pfennig, Arch. Microbiol., 122, 129–135 (1979).

    Article  Google Scholar 

  58. D. R. Boone and M. P. Bryant, Appl. Environ. Microbiol. 40, 626–632 (1980).

    CAS  Google Scholar 

  59. P. L. McCarty, Public Works 95(10), 123–126 (1964).

    CAS  Google Scholar 

  60. H. K. Goering and P. J. Van Soest, Forage Fiber Analysis, Agricultural Handbook. No. 379, U.S. Department of Agriculture, Washington, D.C. (1970).

    Google Scholar 

  61. P. J. Van Soest, in: Digestion and Metabolism in the Ruminant (I. W. McDonald and A. C. I. Warner, eds.), The University of New England Publishing Unit, Armidale, Australia (1975), pp. 351–365.

    Google Scholar 

  62. P. L. McCarty, L. Y. Young, J. M. Gossett, D. C. Stuckey and J. B. Healy, in: Microbiol Energy Conversion (H. G. Schlegel and J. Barnea, eds.), E. Goltz KG, Göttingen (1976), pp. 179–199.

    Google Scholar 

  63. A. M. Buswell and H. F. Mueller, Ind. Eng. Chem. 44, 550–552 (1952).

    Article  CAS  Google Scholar 

  64. A. W. Lawrence, in: Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105 (R. F. Gould, ed.), American Chemical Society, Washington, D.C. (1971), pp. 163–189.

    Chapter  Google Scholar 

  65. P. L. McCarty, in: Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105 (R. F. Gould, ed.), American Chemical Society, Washington, D.C. (1971), pp. 91–107.

    Chapter  Google Scholar 

  66. J. T. Pfeffer and J. C. Liebman, Resour. Recov. Conserv. 1, 295–313 (1976).

    CAS  Google Scholar 

  67. V. H. Varel, H. R. Isaacson, and M. P. Bryant, Appl. Environ. Microbiol. 33, 298–307 (1977).

    CAS  Google Scholar 

  68. R. I. Mackie and M. P. Bryant, Appl. Environ. Microbiol. 41, 1363–1373 (1981).

    CAS  Google Scholar 

  69. P. L. McCarty, Public Works 95 (11), 91–94 (1964).

    CAS  Google Scholar 

  70. I. J. Kugelman and K. K. Chin, in: Anaerobic Biological Treatment Processes, Advances in Chemistry Series 105 (R. F. Gould, ed.), American Chemical Society, Washington, D.C. (1971), pp. 55–90.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

McInerney, M.J., Bryant, M.P. (1981). Basic Principles of Bioconversions in Anaerobic Digestion and Methanogenesis. In: Sofer, S.S., Zaborsky, O.R. (eds) Biomass Conversion Processes for Energy and Fuels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0301-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0301-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0303-0

  • Online ISBN: 978-1-4757-0301-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics