Skip to main content

The Historical Development of Ideas on Applications of Photosensitized Reactions in the Health Sciences

  • Chapter
Primary Photo-Processes in Biology and Medicine

Abstract

Photomedicine, in its broadest sense, involves the use of “light” (visible and ultraviolet = UV electromagnetic radiation = non-ionizing) in medically related activities including the prevention of disease, the preparation of pharmaceuticals, the diagnosis and treatment of disease, and the elucidation of the etiology of disease1. Both the scope and the levels of activity in basic research on, and the clinical applications of, photomedicine have grown phenomenally during the past several years. This results in part from the stimulation provided by the successful application of a few types of photomedical approaches in clinical practice (in particular, PUVA therapy of psoriasis and photodynamic therapy of tumors, as will be discussed later). Certainly the closer cooperative interaction between basic photobiologists and clinicians that has developed recently in many institutions is also an important factor. Another reason may be the development of a widespread feeling in the world that the practice of science should be used more and more for the benefit of humanity, rather than just as an end in itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Parrish, The scope of photomedicine, p. 3 in: “The Science of Photomedicine”, J. D. Regan and J. A. Parrish, eds., Plenum Press, New York (1982).

    Google Scholar 

  2. W. L. Morison, “Phototherapy and Photochemotherapy of Skin Diseases”, Praeger Publishers (1983).

    Google Scholar 

  3. A. C. Giese, Historical introduction, Photophysiology 1: 1 (1964).

    Google Scholar 

  4. O. Raab, Ueber die Wirkung fluorescierender Stoffe auf Infusorien, Z. Biol. 39: 524 (1900).

    Google Scholar 

  5. H. Tappeiner and A. Jodlbauer, “Die sensibilisierende Wirkung fluorescierender Substanzen. Gesammelte Untersuchungen über die photodynamische Erscheinung”, F. C. W. Vogel, Leipzig (1907).

    Google Scholar 

  6. H. F. Blum, “Photodynamic Action and Diseases Caused by Light”, Hafner Publishing Co., New York (1964).

    Google Scholar 

  7. J. D. Spikes, Photodynamic reactions in photomedicine, p. 113 in: “The Science of Photomedicine”. J. D. Regan and J. A. Parrish, eds., Plenum Press, New York (1982).

    Google Scholar 

  8. H. v. Tappeiner, Ueber die Wirkung fluorescierender Stoffe auf Infusorien nach Versuchen von 0. Raab, Winch. Med. Wochenschr. 47: 5 (1900).

    Google Scholar 

  9. H. v. Tappeiner and A. Jesionek, Therapeutische Versuche mit fluoreszierenden Stoffen, Munch. Med. Wochenschr. 50: 2042 (1903).

    Google Scholar 

  10. C. S. Foote, Photosensitized oxidation and singlet oxygen: consequences in biological systems, p. 85 in: “Free Radicals in Biology”, Vol. II, W. A. Pryor, ed., Academic Press, New York (1976).

    Google Scholar 

  11. J. D. Spikes, Photosensitization in mammalian cells, p. 23, in: “Photoimmunology”, J. A. Parrish, M. L. Kripke and W. L. Morison, eds., Plenum Press, New York (1983).

    Google Scholar 

  12. C. P. Gerba, C. Wallis and J. L. Melnick, Disinfection of waste-water by photodynamic oxidation, J. Water Pollut. Control Fed. 49: 575 (1977).

    Google Scholar 

  13. A. J. Acher and B. J. Juven, Destruction of coliforms in water and sewage water by dye-sensitized photooxidation, Appl. Environ. Microbiol. 33: 1019 (1977).

    Google Scholar 

  14. G. R. Seely and R. L. Hart, Photosensitized oxidation by stained alginate beads, Photochem. Photobiol. 26: 655 (1977).

    Article  Google Scholar 

  15. Anonymous, Microorganism control with photosensitizing agents, Chem. Abstr. 95: 19707 (1981).

    Google Scholar 

  16. J. A. Barltrop, B. B. Martin and D. F. Martin, Potential management of Florida red tide through selective photodynamic action, J. Environ. Sci. Hlth. A15: 163 (1980).

    Article  Google Scholar 

  17. Anonymous, Photosensitive pigments for plankton control, Chem. Abstr. 97: 2285 (1982).

    Google Scholar 

  18. P. S. Lacaz, and J. C. E Holanda, Photodynamic effects on the miracidium and cercaria of Schistosoma mansoni, Bol. Acad. Nac. Med. (Brazil) 145:43 (1974). Chem. Abstr. 86:134166.

    Google Scholar 

  19. A. Barbieri, Sensibilizadores fluorescentes como larvicidas. Acci6n fotodynâmica de la luz. Riv. Malariol. 7: 456 (1928).

    Google Scholar 

  20. H. Schildmacher, Über Photosensibilisierung von Stechmuckenlarven durch fluoreszierende Farbstoffe, Biol. Zentr. 69: 468 (1950).

    Google Scholar 

  21. K. Graham, Entomological, ecological and evolutionary implications of photodynamic actions, Can. J. Zool. 50: 1631 (1972).

    Google Scholar 

  22. T. Arnason, T. Swain, C.-K. Wat, E. A. Graham, S. Partington, G. H. N. Towers and J. Lam, Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae, Biochem. Syst. Ecol. 9: 63 (1981).

    Article  Google Scholar 

  23. S. Hironori and J. R. Heitz, Growth inhibition and photooxidative toxicity in the housefly, Musca domestica L., caused by xanthene dye in larval growth medium and after injection, Environ. Entomol. 11: 467 (1982).

    Google Scholar 

  24. J. Kagan, J.-P. Beny, G. Chan, S. N. Dhawan, J. A. Jaworski, E. D. Kagan, P. D. Kassner, M. Murphy and J. A. Rogers, The photo-toxicity of some 1,3-butadienes and related thiophenes against larvae of the mosquito Aedes aegypti and of the fruit fly Drosophila melanogaster, Insect. Sci. Application 4: 377 (1983).

    Google Scholar 

  25. H. Noguchi, The photodynamic action of eosin and erythrosin upon snake venom, J. Exptl. Med. 8: 252 (1906).

    Article  Google Scholar 

  26. W. F. Kocholaty, J. C. Goetz, B. D. Ashley, T. A. Billings and E. B. Ledford, Immunogenic response of the venoms of Fer-de-Lance and La Cascabella following photooxidative detoxification, Toxicon 5: 153 (1968).

    Article  Google Scholar 

  27. R. C. Straight and J. L. Glenn, Antivenom potency and allergenic activity of antivenin (Crotalidae) preparations photooxidized with eosin, Progr. Am. Soc. Photobiol. 8: 51 (1980).

    Google Scholar 

  28. L. Weil, T. S. Seibles, L. Spero and E. J. Schantz, Photooxidation of crystalline Clostridium botulinum type A toxin in the presence of methylene blue, Arch. Biochem. Biophys. 68: 308 (1957).

    Article  Google Scholar 

  29. J. D. Spikes and R. Livingston, The molecular biology of photodynamic action: Sensitized photoautoxidations in biological systems, Adv. Radiat. Biol. 3: 29 (1969).

    Google Scholar 

  30. C. V. Hanson, Inactivation of viruses for use as vaccines and immunodiagnostic reagents, in: “Medical Virology”, Proc. Int. Symp., 2:45, Elsevier (1983).

    Google Scholar 

  31. C. Wallis, J. L. Melnick and C. A. Phillips, Bacterial and fungal decontamination of virus specimens by differential photosensitization, Am. J. Epidemiol. 81: 222 (1965).

    Google Scholar 

  32. F. Heinmets, J. R. Kingston and C. W. Hiatt, Inactivation of viruses in plasma by photosensitized oxidation, Walter Reed Army Institute of Research Report 53–55: 1 (1955).

    Google Scholar 

  33. M. Marcus, V. Lavi, A. Nattenberg, S. Rottem and 0. Markowitz, Selective killing of mycoplasmas from contaminated mammalian cells in culture, Nature 285: 659 (1980).

    Article  Google Scholar 

  34. G. Gregoriadis, ed., “Liposome Technology”, Vols. I-III, CRC Press, Inc., Boca Raton, Florida (1984).

    Google Scholar 

  35. R. Muller-Runkel, J. Blais and L. I. Grossweiner, Photodynamic damage to egg lecithin liposomes, Photochem. Photobiol. 33: 683 (1981).

    Article  Google Scholar 

  36. J. A. Parrish, Photomedicine, Progr. Am. Soc. Photobiol. 7: 75 (1979).

    Google Scholar 

  37. C. Pidgeon and C. A. Hunt, Light-sensitive liposomes, Photochem. Photobiol. 37: 491 (1983).

    Article  Google Scholar 

  38. J. D. Spikes, W. Matis and M. A. J. Rodgers, The photochemical behavior of porphyrins in solution and incorporated into liposomal membranes, Studia Biophys. 94: 19 (1983).

    Google Scholar 

  39. M. Jarratt, W. Hubler, Jr. and W. Panek, Dye-light phototherapy of viral, bacterial and fungal infections, p. 561 in: “The Science of Photomedicine”, J. D. Regan and J. A. Parrish, eds., Plenum Press, New York, (1982).

    Google Scholar 

  40. J. L. Melnick and C. Wallis, Photodynamic inactivation of herpes virus, p. 545 in: “The Science of Photomedicine”, J. D. Regan and J. A. Parrish, eds., Plenum Press, New York (1982).

    Google Scholar 

  41. F. Rapp and J. L. Li, Transforming activity of viruses after dye-light inactivation, p. 571 in: “The Science of Photomedicine”, J. D. Regan and J. R. Parrish, eds., Plenum Press, New York (1982).

    Google Scholar 

  42. N. K. Veien, J. Genner, H. Brodthagen and G. Wettermark, Photodynamic inactivation of verrucae vulgares. II., Acta Dermatoven. 57: 445 (1977).

    Google Scholar 

  43. G. Busck and H. v. Tappeiner, Über Lichtbehandlung blutparasitärer Krankheiten, Arch. Klin. Med. 87: 98 (1906).

    Google Scholar 

  44. D. E. Rounds, W. Opel, R. S. Olson and I. W. Sherman, The potential use of laser energy in the management of malaria, Biochem. Biophys. Res. Commun. 32: 616 (1968).

    Article  Google Scholar 

  45. T. B. Fitzpatrick and M. A. Pathak, Historical aspects of methoxsalen and other furocoumarins, J. Invest. Dermatol. 32: 229 (1959).

    Article  Google Scholar 

  46. A. V. Benedetto, The psoralens, an historical survey, Cutis, 20: 469 (1977).

    Google Scholar 

  47. J.A. Parrish, R. S. Stern, M. A. Pathak and T. B. Fitzpatrick, Photochemotherapy of skin disease, p. 595 in: “The Science of Photomedicine”, J. D. Regan and J. A. Parrish, eds., Plenum Press, New York, (1982).

    Google Scholar 

  48. J. A. Parrish, T. B. Fitzpatrick, L. Tanenbaum and M. A. Pathak, Photochemotherapy of psoriasis with oral methoxsalen and longwave ultraviolet light. N. Engl. J. Med. 291: 1207 (1974).

    Article  Google Scholar 

  49. G. Rodighiero and F. Dall’Acqua, Photobiological properties of monofunctional furocoumarin derivatives, p. 319 in: “Topics in Photomedicine”, K. C. Smith, ed., Plenum Press (1984).

    Google Scholar 

  50. A. Jesionek and H. v. Tappeiner, Zur behandlung der Hautcarcinome mit fluorescierenden Stoffen, Arch. Klin. Med. 82: 223 (1905).

    Google Scholar 

  51. S. M. Copeman, F. Coke and C. Gouldesbrough, “Activated” (irradiated) fluorescein in the treatment of cancer, Brit. Med. J. 2: 233 (1929).

    Article  Google Scholar 

  52. H. Auler and G. Banzer, Untersuchungen uber die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren, Z. Krebsforsch. 53: 65 (1942).

    Article  Google Scholar 

  53. J. Moan and T. Christensen, Porphyrins as tumor localizing agents and their possible use in photochemotherapy of cancer. A review, Tumor Res. 15: 1 (1980).

    Google Scholar 

  54. J. Moan and T. Christensen, Porphyrins as tumor localizing agents and their possible use in photochemotherapy of cancer. A review, Tumor Res. 15: 1 (1980).

    Google Scholar 

  55. T. J. Dougherty, D. G. Boyle and K. R. Weishaupt, Photoradiation therapy of human tumors, p. 625 in: “The Science of Photomedicine”, J. D. Regan and J. A. Parrish, eds., Plenum Press, New York (1982).

    Google Scholar 

  56. M. S. Lipson, M. J. Gray and E. J. Baldes, Hematoporphyrin derivative for detection and management of cancer, Proc. 9th Intl. Cancer Congr., p. 393 (1966).

    Google Scholar 

  57. H. Berg and W. Jungstand, Photodynamische Wirkung auf das solide Ehrlich-Karzinom, Naturwiss. 53: 481 (1966).

    Article  Google Scholar 

  58. W. Jungstand and H. Berg, In-vivo-Versuche zur Cytostase durch photodynamische Effekte von Redoxfarben, Studia Biophys. 3: 225 (1967).

    Google Scholar 

  59. I. Diamond, S. G. Grannelli, A. F. McDonagh, A. F. Nielson, C. B. Wilson and R. Jaenicke, Photodynamic therapy of malignant tumors, Lancet ii: 1175 (1972).

    Google Scholar 

  60. T. J. Dougherty, Activated dyes as antitumor agents, J. Natl. Cancer Inst. 52: 1333 (1974).

    Google Scholar 

  61. S. H. Towson, E. A. Emmett and S. H. Fox, Photodestruction of mouse epithelial tumors after oral acridine orange and argon laser, Cancer Res. 34: 3124 (1974).

    Google Scholar 

  62. J. F. Kelly, M. E. Snell and M. C. Berenbaum, Photodynamic destruction of human bladder carcinoma, Br. J. Cancer 31: 237 (1975).

    Article  Google Scholar 

  63. T. J. Dougherty, G. B. Grindey, R. Fiel, K. Weishaupt and D. G. Boyle, Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light, J. Natl. Cancer Inst. 55: 115 (1975).

    Google Scholar 

  64. D. Kessel, Porphyrin localization: a new modality for detection and therapy of tumors, Biochem. Pharmacol. 33: 1389 (1984).

    Google Scholar 

  65. A. Andreoni and R. Cubeddu, eds., “Porphyries in Tumor Phototherapy”, Plenum Press, New York, (1984).

    Google Scholar 

  66. D. R. Doiron and C. J. Gomer, eds., “Porphyrin Localization and Treatment of Tumors”, Alan R. Liss, Inc., New York (1984).

    Google Scholar 

  67. M. Tsutsui, C. Carrano and E. A. Tsutsui, Tumor localizers: porphyrins and related compounds (unusual metalloporphyrins XXIII), Ann. N.Y. Acad. Sci. 244: 674 (1975).

    Article  Google Scholar 

  68. R. J. Riopelle and J. C. Kennedy, Some aspects of neurotoxicity in vitro, Can. J. Physiol. Pharmacol. 60: 707 (1982).

    Article  Google Scholar 

  69. J. Barltrop, B. B. Martin and D. F. Martin, Ptychodiscus brevis as a model system for photodynamic action, Microbios 37: 95 (1983).

    Article  Google Scholar 

  70. D. Mew, C.-K. Wat, G. H. N. Towers and J. G. Levy, Photoimmunotherapy, treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J. Immunol. 130: 1473 (1983).

    Google Scholar 

  71. G. Jori, L. Tornio, E. Reddi, E. Rossi, L. Corti, P. L. Zorat and F. Calzavara, Preferential delivery of liposome-incorporated porphyrins to neoplastic cells in tumour-bearing rats, Br. J. Cancer, 48: 231 (1983).

    Article  Google Scholar 

  72. J. L. McCullough, G. D. Weinstein, L. L. Lemus, W. Rampone and J. Jenkins, Development of a topical hematoporphyrin derivative formulation: Characterization of photosensitizing effects in vivo, J. Invest. Dermatol. 81: 528 (1983).

    Article  Google Scholar 

  73. W. Diezel, N. Sonnichsen and H. Meffert, Treatment of psoriasis with hematoporphyrin derivate and longwave ultraviolet light, Studia Biophys. 94: 45 (1983).

    Google Scholar 

  74. M. W. Berns, M. Rettenmaier, J. McCullough, J. Coffey, A. Wile, M. Berman, P. DiSaia and G. Weinstein, Response of psoriasis to red laser light (630 nm) following systemic injection of hematoporphyrin derivative, Lasers Surg. Med. 4: 73 (1984).

    Google Scholar 

  75. A. Jodlbauer and H. v. Tappeiner, Über die Wirkung fluorescierender Stoffe auf Toxine, Arch. Klin. Med. 85: 129 (1905).

    Google Scholar 

  76. F. F. Rubaltelli and G. Jori, “Neonatal Jaundice-New Trends in Phototherapy, Plenum Press, New York (1984).

    Google Scholar 

  77. H. B. Kostenbauder and D. R. Sanvordeker, Riboflavin enhancement of bilirubin photocatabolism in vivo, Experientia 29: 282 (1973).

    Article  Google Scholar 

  78. D. Jährig, B. Maass, P. Meisel, K. Jährig, U. Grimm and H. Zollner, Zur frage photodyamischer Schaden an Erythrozyten unter Blaulichttherapie bei Icterus neonatorum, Acta Biol. Med. Germ. 40: 811 (1981).

    Google Scholar 

  79. E. Knobloch, R. Hodr, J. Herzuran and V. Houdkova, Function of flavins in photolysis of bilirubin in vitro, Coll. Czech. Chem. Commun. 47: 1514 (1982).

    Article  Google Scholar 

  80. J. S. Bellin, Immunological properties of photodynamically inactivated tumour cells, Nature, 194: 851 (1962).

    Article  Google Scholar 

  81. J. Fujimoto, H. Higashi, E. Ito, et al., Photodynamic action on the transplantability of 4NQO-induced tumor cells, Med. J. Osaka Univ., 20: 7 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Spikes, J.D. (1985). The Historical Development of Ideas on Applications of Photosensitized Reactions in the Health Sciences. In: Bensasson, R.V., Jori, G., Land, E.J., Truscott, T.G. (eds) Primary Photo-Processes in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1224-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1224-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1226-0

  • Online ISBN: 978-1-4684-1224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics