Skip to main content

Abstract

The purpose of photoreceptors is the conversion of light into an electrical signal that controls the release of transmitter (glutamate) and thereby initiates a chain of physiological responses in other retinal neurons. The first step in the transduction cascade is the absorption of a photon by rhodopsin. Rhodopsin is mainly located in the plasma membrane of disks in the outer segment and consists of the chromophore 11-cis-retinal linked to the heptahelical protein opsin via a Schiff base to a lysin. Absorption of a photon isomerizes retinal to the all-trans-conformation and converts rhodopsin to metarhodopsin II. Metarhodopsin II activates a cGMP-cleaving phosphodiesterase (PDE) via a specific G-protein (transducin). As a result of these enzymatic reactions the intracellular cGMP concentration is lowered and cGMP dissociates from the binding sites of the cGMP-dependent channels in the plasma membrane of the outer segment. The cGMP-dependent kation channels are open when the cGMP concentration in the photoreceptor is high in darkness. The channels close when the cGMP-level is lowered upon illumination and the inward current driven by a sodium-potassium pump in the inner segment is stopped. Interruption of this inward current, which is carried by sodium and calcium ions hyperpolarizes the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Kühn, Light-regulated binding of rhodopsin kinase and other proteins to cattle bovine photoreceptor membranes, Biochem. 17: 4389–4395 (1978).

    Article  Google Scholar 

  2. H. Kühn, Light-and GTP-regulated interaction of GTP-ase and other proteins with bovine photoreceptor membranes, Nature 283: 587–589 (1980).

    Article  PubMed  Google Scholar 

  3. L. Lagnado and D. Baylor, Signal flow in visual transduction, Neuron 8: 995–1002 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. E.N.Jr. Pugh and T.D. Lamb, Amplification and kinetics of the activation steps in phototransduction,Biochim. Biophys. Acta 1141: 111–149 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Koutalos and K.W. Yau, A rich complexity emerges in phototransduction, Curr. Opin. Neurobiol. 3:513–519(1993)

    Article  PubMed  CAS  Google Scholar 

  6. K.-W. Koch and L. Stryer, Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions, Nature 334: 64–66 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. Y. Horio and F. Murad, Solubilization of guanylyl cyclase from bovine rod outer segments and effects of lowering Ca2+ and nitro compounds, J. Biol. Chem. 266: 3411–3415 (1991).

    PubMed  CAS  Google Scholar 

  8. H.-G. Lambrecht and K.-W. Koch, Phosphorylation of recoverin, the calcium-sensitive activator of photoreceptor guanylyl cyclase, FEBS Letters 294: 207–209 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. H.-G. Lambrecht and K.-W. Koch, A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J. 10: 793–798 (1991).

    PubMed  CAS  Google Scholar 

  10. L.W. Haynes, A.R. Kay, and K.W. Yau, Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane, Nature 321: 66–70 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. A. Zimmerman and D.A. Baylor, Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores, Nature 321: 70–72 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. Y.T. Hsu and R.S. Molday, Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin, Nature 361: 76–79 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. S. Kawamura, Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362: 855–857 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. U.B. Kaupp and K.-W. Koch, Role of cGMP and Ca2+ in vertebrate photoreceptor excitation and adaptation, Ann. Rev. Physiol. 54: 153–175 (1992).

    Article  CAS  Google Scholar 

  15. V.J. Coccia and R.H. Cote, Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors, J. Gen. Physiol. 103: 67–86 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. A. Margulis, R.K. Sharma, and A. Sitaramayya, Nitroprusside-sensitive and insensitive guanylate cyclases in retinal rod outer segments, Biochem. Biophys. Res. Comm. 185: 909–914 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. CM. Venturini, R.G. Knowles, R.M.J. Palmer, and S. Moncada, Synthesis of nitric oxide in the bovine retina, Biochem. Biophys. Res. Comm. 180: 920–925 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. E.E. Fesenko, S.S. Kolesnikov, and A.L. Lyubarski, Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment, Nature 313: 310–313 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. K.-F. Schmidt, G.N. Noll, and C. Baumann, Effect of guanine nucleotides on the dark voltage of single frog rods, Visual Neurosci. 2: 101–108 (1989).

    Article  CAS  Google Scholar 

  20. C.R. Bader, D. Bertrand, and E.A. Schwartz, Voltage activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina, J. Physiol. 331: 253–284 (1982).

    PubMed  CAS  Google Scholar 

  21. M. Pusch and E. Neher, Rates of diffusional exchange between small cells and a measuring patch pipette, Pflügers Arch., 411: 204–211 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. K.-F. Schmidt, G.N. Noll, P. Jacobi, and C. Baumann, Configuration of light responses in isolated retinal rods. A patch-clamp study, Graefe’s Arch. Clin. Exp. Ophthalmol. 232: 153–161 (1994).

    Article  CAS  Google Scholar 

  23. K.-F. Schmidt, G.N. Noll, and Y. Yamamoto, Sodium Nitroprusside alters dark voltage and light responses on isolated retinal rods during whole-cell recording, Visual Neurosci. 9: 205–209 (1992).

    Article  CAS  Google Scholar 

  24. Y. Tsuyama, G.N. Noll, and K.-F. Schmidt, L-Arginine and nicotinamide adenine dinucleotide phosphate alter dark voltage and accelerate light response recovery in isolated retinal rods of the frog (Rana temporaria), Neurosci. Letters 149: 95–98 (1993).

    Article  CAS  Google Scholar 

  25. A. Ames, T.F. Walseth, R.A. Heyman, M. Barad, R.M. Graeff, and N.D. Goldberg, Light-induced increases in cGMP metabolic flux correspondend with electrical responses of photoreceptors, J. Biol. Chem. 261: 13034–13042(1986).

    PubMed  CAS  Google Scholar 

  26. S.M. Dawis, R.M. Graeff, R.A. Heyman, T.F. Walseth, and N.D. Goldberg, Regulation of cyclic GMP metabolism in toad photoreceptors, J. Biol. Chem. 263: 8771–8785 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, KF., Nöll, G.N. (1995). Nitric Oxide in Amphibian Photoreceptors. In: Weissman, B.A., Allon, N., Shapira, S. (eds) Biochemical, Pharmacological, and Clinical Aspects of Nitric Oxide. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1903-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1903-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5777-3

  • Online ISBN: 978-1-4615-1903-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics