Skip to main content

Anatomical Distribution of Nucleoside System in the Human Brain and Implications for Therapy

  • Chapter
  • First Online:
Adenosine

Abstract

Nucleosides have a wide range of physiological and pathophysiological roles in the human brain as modulators of a variety of neural functions. For example, adenosine, inosine, guanosine, and uridine participate in the mechanisms underlying memory, cognition, sleep, pain, depression, schizophrenia, epilepsy, Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. Consequently, increasing attention is now being given to the specific role of nucleosides in physiological and pathological processes in the human brain. Different elements of nucleoside system, including nucleoside concentrations, metabolic enzyme activity, and expression of nucleoside transporters and receptors, may be changed under normal and pathological conditions. The alterations suggest that interlinked elements of the nucleoside system are functioning in a tightly concerted manner.

Nucleoside levels, activity of nucleoside metabolic enzymes, and expression of nucleoside transporters and receptors are unevenly distributed in the brain, suggesting that nucleosides have different roles in functionally distinct human brain areas. The aim of this chapter is to summarize our present knowledge of the anatomical distribution of nucleoside system in the human brain, placing emphasis on potential therapeutic pharmacological strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5′NT:

5′-Nucleotidases

A1 receptor/A2A receptor/A2B receptor/A3 receptor:

A1R/A2AR/A2BR/A3R subtype of adenosine receptors

AC:

Adenylate cyclase

ADA:

Adenosine deaminase

Ade:

Adenine

ADK:

Adenosine kinase

Ado:

Adenosine

AMP:

Adenosine monophosphate

CDP-choline:

Cytidine diphosphocholine

cN:

Cytoplasmic 5′-nucleotidases

CNS:

Central nervous system

CNT transporters:

Concentrative nucleoside transporters

CNT1/CNT2/CNT3 transporters:

CNT1/CNT2/CNT3 subtype of concentrative nucleoside transporters

Cyd:

Cytidine

EC:

Extracellular

ENT transporters:

Equilibrative nucleoside transporters

ENT1/ENT2/ENT3/ENT4 transporters:

ENT1/ENT2/ENT3/ENT4 subtype of equilibrative nucleoside transporters

“es” nucleoside transporters:

Equilibrative, NBTI sensitive type of ENT transporters

GABA:

γ-Aminobutyric acid

GDA:

Guanine deaminase

GMP:

Guanosine monophosphate

Gn:

Guanine

Guo:

Guanosine

Hyp:

Hypoxanthine

IMP:

Inosine monophosphate

Ino:

Inosine

NBTI:

S-(4-nitrobenzyl)-6-thioinosine

PLC:

Phospholipase C

PNP:

Purine nucleoside phosphorylase

Urd:

Uridine

Xn:

Xanthine

References

  • Agnati LF, Fuxe K, Ruggeri M, Merlo Pich E, Benfenati F, Volterra V, Ungerstedt U, Zini I (1989) Effects of chronic treatment with uridine on striatal dopamine release and dopamine related behaviours in the absence or the presence of chronic treatment with haloperidol. Neurochem Int 15:107–113

    Article  PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Shasavand E, Jamilian H, Shabestari O, Kamalipour A (2000) Dipyridamole in the treatment of schizophrenia: adenosine-dopamine receptor interactions. J Clin Pharm Ther 25:131–137

    Article  PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Safarcherati A, Amini H (2005) Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: a double blind, randomized and placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 29:253–259

    Article  PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Milajerdi MR, Amini H, Tehrani-Doost M (2006) Allopurinol as an adjunct to lithium and haloperidol for treatment of patients with acute mania: a double-blind, randomized, placebo-controlled trial. Bipolar Disord 8:485–489

    Article  PubMed  CAS  Google Scholar 

  • Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484

    Article  PubMed  Google Scholar 

  • Arias-Menendez L (2002) Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol Sci 23:381–388

    Article  Google Scholar 

  • Baldo BA, Koob GF, Markou A (1999) Role of adenosine A2 receptors in brain stimulation reward under baseline conditions and during cocaine withdrawal in rats. J Neurosci 19:11017–11026

    PubMed  CAS  Google Scholar 

  • Baldwin SA, Mackey JR, Cass CE, Young JD (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 5:216–224

    Article  PubMed  CAS  Google Scholar 

  • Baldwin SA, Yao SYM, Hyde RJ, Ng AML, Foppolo S, Barnes K, Ritzel MWL, Cass CE, Young JD (2005) Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 280:15880–15887

    Article  PubMed  CAS  Google Scholar 

  • Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, Sun L, Tellez J, Ritzel MW, Claycomb WC, Cass CE, Young JD, Billeter-Clark R, Boyett MR, Baldwin SA (2006) Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res 99:510–519

    Article  PubMed  CAS  Google Scholar 

  • Barraco RA, Swanson TH, Phillis JW, Berman RF (1984) Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci Lett 46:317–322

    Article  PubMed  CAS  Google Scholar 

  • Barrett RJ, Lamson MJ, Johnson J, Smith WB (2005) Pharmacokinetics and safety of binodenoson after intravenous dose escalation in healthy volunteers. J Nucl Cardiol 12:166–171

    Article  PubMed  Google Scholar 

  • Bastia E, Xu YH, Scibelli AC, Day YJ, Linden J, Chen JF, Schwarzschild MA (2005) A crucial role for forebrain adenosine A(2A) receptors in amphetamine sensitization. Neuropsychopharmacology 30:891–900

    Article  PubMed  CAS  Google Scholar 

  • Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci USA 99:8573–8578

    Article  PubMed  CAS  Google Scholar 

  • Benesch M, Urban C (2008) Liposomal cytarabine for leukemic and lymphomatous meningitis: recent developments. Expert Opin Pharmacother 9:301–309

    Article  PubMed  CAS  Google Scholar 

  • Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271

    Article  CAS  Google Scholar 

  • Bertram EH (2009) Temporal lobe epilepsy: where do the seizures really begin? Epilepsy Behav 14(Suppl 1):32–37

    Article  PubMed  Google Scholar 

  • Beukers MW, Chang LC, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, Ijzerman AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47:3707–3709

    Article  PubMed  CAS  Google Scholar 

  • Bjerring PN, Hauerberg J, Jørgensen L, Frederiksen HJ, Tofteng F, Hansen BA, Larsen FS (2010) Brain hypoxanthine concentration correlates to lactate/pyruvate ratio but not intracranial pressure in patients with acute liver failure. J Hepatol 53:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Hourez R, Galas MC, Popoli P, Schiffmann SN (2003) Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol 2:366–374

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2005) Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist 11:25–36

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2011) Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem 11:1068–1086

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Singer P, Shen HY, Feldon J, Yee BK (2012) Adenosine hypothesis of schizophrenia-Opportunities for pharmacotherapy. Neuropharmacology 62:1527–1543

    Google Scholar 

  • Borbely AA, Tobler I (1989) Endogenous sleep-promoting substances and sleep regulation. Physiol Rev 69:605–670

    PubMed  CAS  Google Scholar 

  • Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE (2009) Structure-activity relationships of adenine and deazaadenine derivatives as ligands for adenine receptors, a new purinergic receptor family. J Med Chem 52:5974–5989

    Article  PubMed  CAS  Google Scholar 

  • Bowley MP, Drevets WC, Öngür D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Brauch RA, Adnan El-Masri M, Parker JC Jr, El-Mallakh RS (2006) Glial cell number and neuron/glial cell ratios in postmortem brains of bipolar individuals. J Affect Disord 91:87–90

    Article  PubMed  Google Scholar 

  • Breckenridge A (2005) Pharmacology of drugs for HIV. Medicine 33:30–31

    Article  Google Scholar 

  • Brundege JM, Williams JT (2002) Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment. J Neurophysiol 87:1369–1375

    PubMed  CAS  Google Scholar 

  • Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    Article  PubMed  CAS  Google Scholar 

  • Bzowska A, Kulikowska E, Shugar D (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Therapeut 88:349–425

    Article  CAS  Google Scholar 

  • Cansev M (2006) Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev 52:389–397

    Article  PubMed  CAS  Google Scholar 

  • Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ (2008) Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci Res 62:206–209

    Article  PubMed  CAS  Google Scholar 

  • Castane A, Soria G, Ledent C, Maldonado R, Valverde O (2006) Attenuation of nicotine-induced rewarding effects in A2A knockout mice. Neuropharmacology 51:631–640

    Article  PubMed  CAS  Google Scholar 

  • Ceballos G, Tuttle JB, Rubio R (1994) Differential distribution of purine metabolizing enzymes between glia and neurons. J Neurochem 62:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Ceruti S, Franceschi C, Barbieri D, Malorni W, Camurri A, Giammarioli AM, Ambrosini A, Racagni G, Cattabeni F, Abbracchio MP (2000) Apoptosis induced by 2-chloro-adenosine and 2-chloro-2’-deoxy-adenosine in a human astrocytoma cell line: differential mechanisms and possible clinical relevance. J Neurosci Res 60:388–400

    Article  PubMed  CAS  Google Scholar 

  • Chang R, Algird A, Bau C, Rathbone MP, Jiang S (2008) Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci Lett 431:101–105

    Article  PubMed  CAS  Google Scholar 

  • Chen TH, Wang MF, Liang YF, Komatsu T, Chan YC, Chung SY, Yamamoto S (2000) A nucleoside-nucleotide mixture may reduce memory deterioration in old senescence-accelerated mice. J Nutr 130:3085–3089

    PubMed  CAS  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143

    PubMed  CAS  Google Scholar 

  • Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y (2005) CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. J Neurochem 93:310–320

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D’Onofrio M, Caciagli F, Di Iorio P (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19:395–414

    Article  PubMed  CAS  Google Scholar 

  • Connolly GP, Duley JA (1999) Uridine and its nucleotides: biological actions, therapeutic potentials. Trends Pharmacol Sci 20:218–225

    Article  PubMed  CAS  Google Scholar 

  • Cornfield LJ, Hu S, Hurt SD, Sills MA (1992) [3 H]2-phenylaminoadenosine ([3 H]CV 1808) labels a novel adenosine receptor in rat brain. J Pharmacol Exp Ther 263:552–561

    PubMed  CAS  Google Scholar 

  • Cunha RA (2005) Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1:111–134

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Fredholm BB, Ribeiro JA, Sebastiao AM (1995) Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neurosci Lett 196:41–44

    Article  PubMed  CAS  Google Scholar 

  • Curros-Criado MM, Herrero JF (2005) The antinociceptive effects of the systemic adenosine A1 receptor agonist CPA in the absence and in the presence of spinal cord sensitization. Pharmacol Biochem Behav 82:721–726

    Article  PubMed  CAS  Google Scholar 

  • D’Alimonte I, D’Auro M, Citraro R, Biagioni F, Jiang S, Nargi E, Buccella S, Di Iorio P, Giuliani P, Ballerini P, Caciagli F, Russo E, De Sarro G, Ciccarelli R (2009) Altered distribution and function of A2A adenosine receptors in the brain of WAG/Rij rats with genetic absence epilepsy, before and after appearance of the disease. Eur J Neurosci 30:1023–1035

    Article  PubMed  Google Scholar 

  • Dall’Igna OP, Porciúncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Maclean RR (2007) Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 31:775–824

    Article  PubMed  CAS  Google Scholar 

  • Dawson DM (1971) Absence of guanine deaminase from cerebellum. Neurology 21:621–626

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2009) Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 33:307–320

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2011) A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol 51:1–24

    Article  PubMed  CAS  Google Scholar 

  • De Mattia E, Toffoli G (2009) C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer 45:1333–1351

    Article  PubMed  CAS  Google Scholar 

  • De Mendonca A, Sebastiao AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100

    Article  PubMed  Google Scholar 

  • De Oliveira DL, Horn JF, Rodrigues JM, Frizzo ME, Moriguchi E, Souza DO, Wofchuk S (2004) Quinolinic acid promotes seizures and decreases glutamate uptake in young rats: reversal by orally administered guanosine. Brain Res 1018:48–54

    Article  PubMed  CAS  Google Scholar 

  • Deckert J, Abel F, Kunig G, Hartmann J, Senitz D, Maier H, Ransmayr G, Riederer P (1998) Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett 244:1–4

    Article  PubMed  CAS  Google Scholar 

  • Deutsch SI, Long KD, Rosse RB, Mastropaolo J, Eller J (2005) Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch-Nyhan syndrome. Clin Neuropharmacol 28:28–37

    Article  PubMed  CAS  Google Scholar 

  • Di Iorio P, Ballerini P, Traversa U, Nicoletti F, D’Alimonte I, Kleywegt S, Werstiuk ES, Rathbone MP, Caciagli F, Ciccarelli R (2004) The antiapoptotic effect of guanosine is mediated by the activation of the PI 3-kinase/AKT/PKB pathway in cultured rat astrocytes. Glia 46:356–368

    Article  PubMed  Google Scholar 

  • Dietrich WD (1998) Neurobiology of stroke. Int Rev Neurobiol 42:55–101

    Article  PubMed  CAS  Google Scholar 

  • Dobolyi A, Szikra T, Kekesi AK, Kovacs Z, Juhasz G (1999) Uridine is released by depolarization and inhibits unit activity in the rat hippocampus. Neuroreport 10:3049–3053

    Article  PubMed  CAS  Google Scholar 

  • Dobolyi A, Reichart A, Szikra T, Nyitrai G, Kekesi KA, Juhasz G (2000) Sustained depolarisation induces changes in the extracellular concentrations of purine and pyrimidine nucleosides in the rat thalamus. Neurochem Int 37:71–79

    Article  PubMed  CAS  Google Scholar 

  • Dobolyi A, Juhasz G, Kovacs Z, Kardos J (2011) Uridine function in the central nervous system. Curr Top Med Chem 11:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A (2011) Targeting neuronal populations of the striatum. Front Neuroanat 5:40

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi C, Harbison RD (1975) Anticonvulsant activities of delta-8 and delta-9 tetrahydrocannabinol and uridine. Toxicol Appl Pharmacol 31:452–458

    Article  PubMed  CAS  Google Scholar 

  • Eells JT, Spector R (1983) Purine and pyrimidine base and nucleoside concentrations in human cerebrospinal fluid and plasma. Neurochem Res 8:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Ekonomou A, Angelatou F, Vergnes M, Kostopoulos G (1998) Lower density of A1 adenosine receptors in nucleus reticularis thalami in rats with genetic absence epilepsy. Neuroreport 9:2135–2140

    Article  PubMed  CAS  Google Scholar 

  • Elzein E, Zablocki J (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs 17:1901–1910

    Article  PubMed  CAS  Google Scholar 

  • Erion MD, Ugarkar BG, Dare J, Castellino AJ, Fujitaki JM, Dixon R, Appleman JR, Wiesner JB (1997) Design, synthesis and anticonvulsant activity of the potent adenosine kinase inhibitor GP3269. Nucleos Nucleot 16:1013–1021

    Article  CAS  Google Scholar 

  • Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91

    PubMed  CAS  Google Scholar 

  • Farabegoli C, Merlo Pich E, Cimino M, Agnati LF, Fuxe K (1988) Chronic uridine treatment reduces the level of [3 H]spiperone-labelled dopamine receptors and enhances their turnover rate in striatum of young rats: relationship to dopamine-dependent behaviours. Acta Physiol Scand 132:209–216

    Article  PubMed  CAS  Google Scholar 

  • Fastbom J, Pazos A, Probst A, Palacios JM (1986) Adenosine A1 receptors is human brain: characterisation and autoradiographic visualization. Neurosci Lett 65:127–132

    Article  PubMed  CAS  Google Scholar 

  • Fastbom J, Pazos A, Palacios JM (1987) The distribution of adenosine A1 receptors and 5’-nucleotidase is the brain of some commonly used experimental animals. Neuroscience 22:813–826

    Article  PubMed  CAS  Google Scholar 

  • Fava M (2003) The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 64(Suppl 13):26–29

    PubMed  CAS  Google Scholar 

  • Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200:184–190

    Article  PubMed  CAS  Google Scholar 

  • Fernández JR, Sweet ES, Welsh WJ, Firestein BL (2010) Identification of small molecule compounds with higher binding affinity to guanine deaminase (cypin) than guanine. Bioorg Med Chem 18:6748–6755

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SM, Huang ZL, Urade Y, Kitchen I (2007) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Firestein BL, Brenman JE, Aoki C, Sanchez-Perez AM, El-Husseini AE, Bredt DS (1999) Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron 24:659–672

    Article  PubMed  CAS  Google Scholar 

  • Franklin A, Blanden RV (2007) Potential inhibition of somatic hypermutation by nucleoside analogues. Mol Immunol 44:666–669

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, Souza DO (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22:353–363

    Article  PubMed  CAS  Google Scholar 

  • Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3:415–424

    Article  PubMed  CAS  Google Scholar 

  • Garakani A, Mathew SJ, Charney DS (2006) Neurobiology of anxiety disorders and implications for treatment. Mt Sinai J Med 73:941–949

    PubMed  Google Scholar 

  • Geiger JD, Nagy JI (1986) Distribution of adenosine deaminase activity in rat brain and spinal cord. J Neurosci 6:2707–2714

    PubMed  CAS  Google Scholar 

  • Gerevich Z, Wirkner K, Illes P (2002) Adenosine A2A receptors inhibit the N-methyl-D-aspartate component of excitatory synaptic currents in rat striatal neurons. Eur J Pharmacol 451:161–164

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Llort L, Fernandez-Teruel A, Escorihuela RM, Fredholm BB, Tobena A, Pekny M, Johansson B (2002) Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur J Neurosci 16:547–550

    Article  PubMed  Google Scholar 

  • Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105:1348–1353

    Article  PubMed  CAS  Google Scholar 

  • Gracia E, Cortés A, Meana JJ, García-Sevilla J, Herhsfield MS, Canela EI, Mallol J, Lluís C, Franco R, Casadó V (2008) Human adenosine deaminase as an allosteric modulator of human A(1) adenosine receptor: abolishment of negative cooperativity for [H](R)-pia binding to the caudate nucleus. J Neurochem 107:161–170

    Article  PubMed  CAS  Google Scholar 

  • Griffith GA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    Article  PubMed  CAS  Google Scholar 

  • Guillén-Gómez E, Calbet M, Casado J, de Lecea L, Soriano E, Pastor-Anglada M, Burgaya F (2004) Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. J Neurochem 90:883–893

    Article  PubMed  CAS  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SP, Slager SL, De Leon AB, Heiman GA, Klein DF, Hodge SE, Weissman MM, Fyer AJ, Knowles JA (2004) Evidence for genetic linkage between a polymorphism in the adenosine 2A receptor and panic disorder. Neuropsychopharmacology 29:558–565

    Article  PubMed  CAS  Google Scholar 

  • Hanley SP, Hampton JR (1983) Ventricular arrhythmias associated with lidoflazine: side-effects observed in a randomized trial. Eur Heart J 4:889–893

    PubMed  CAS  Google Scholar 

  • Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, Kowall N, Satlin A (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 131:1609–1617

    Article  PubMed  Google Scholar 

  • Harris MK, Shneyder N, Borazanci A, Korniychuk E, Kelley RE, Minagar A (2009) Movement disorders. Med Clin North Am 93:371–388

    Article  PubMed  Google Scholar 

  • Haskó G, Sitkovsky MV, Szabó C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25:152–157

    Article  PubMed  CAS  Google Scholar 

  • Haskó G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516

    Article  PubMed  CAS  Google Scholar 

  • Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology 61:286–287

    Article  CAS  Google Scholar 

  • Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, Huyck S, Wolski K (2011) Preladenant in patients with Parkinson’s disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol 10:221–229

    Article  PubMed  CAS  Google Scholar 

  • Headrick JP, Peart JN, Reichelt ME, Haseler LJ (2011) Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta 1808:1413–1428

    Article  PubMed  CAS  Google Scholar 

  • Heinricher MM, Tavares I, Leith JL, Lumb BM (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60:214–225

    Article  PubMed  CAS  Google Scholar 

  • Hendel RC, Bateman TM, Cerqueira MD, Iskandrian AE, Leppo JA, Blackburn B, Mahmarian JJ (2005) Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J Am Coll Cardiol 46:2076–2078

    Article  CAS  Google Scholar 

  • Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di Paolo T, Grzelak ME, Pond AJ, Hadjtahar A, Belanger N, Gregoire L, Dare A, Neustadt BR, Stamford AW, Hunter JC (2010) Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 225:384–390

    Article  PubMed  CAS  Google Scholar 

  • Holguin S, Martinez J, Chow C, Wurtman R (2008) Dietary uridine enhances the improvement in learning and memory produced by administering DHA to gerbils. FASEB J 22:3938–3946

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Komoda Y, Nishida S, Nagasaki H, Higashi A, Uchizono K, Inoue S (1984) Uridine as an active component of sleep-promoting substance: its effects on nocturnal sleep in rats. Neurosci Res 1:243–252

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Okano Y, Komoda Y, Inoue S (1985) Sleep-promoting effects of intraperitoneally administered uridine in unrestrained rats. Neurosci Lett 62:137–141

    Article  PubMed  CAS  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2011) The role of adenosine in the regulation of sleep. Curr Top Med Chem 11:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Inoue S (1986) Sleep and sleep substances. Brain Dev 8:469–473

    Article  PubMed  CAS  Google Scholar 

  • Ipata PL, Camici M, Micheli V, Tozzi MG (2011) Metabolic network of nucleosides in the brain. Curr Top Med Chem 11:909–922

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF (2009) Adenosine, adenosine A2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord 15:406–413

    Article  PubMed  CAS  Google Scholar 

  • Jennings LL, Hao C, Cabrita MA, Vickers MF, Baldwin SA, Young J, Cass CE (2001) Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neuropharmacology 40:722–731

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Fredholm BB (1997) Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedeberg’s Arch Pharmacol 355:48–56

    Article  CAS  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Gimenez-Llort L, Escorihuela RM, Fernandez-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 98:9407–9412

    Article  PubMed  CAS  Google Scholar 

  • Jurkowitz MS, Litsky ML, Browning MJ, Hohl CM (1998) Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation. J Neurochem 71:535–548

    Article  PubMed  CAS  Google Scholar 

  • Kaiser SM, Quinn RJ (1999) Adenosine receptors as potential therapeutic targets. Drug Discov Today 4:542–551

    Article  PubMed  CAS  Google Scholar 

  • Kalia M (2005) Neurobiological basis of depression: an update. Metabolism 54:24–27

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    Article  PubMed  CAS  Google Scholar 

  • Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A(2A) antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327

    Article  PubMed  CAS  Google Scholar 

  • Kékesi KA, Kovács Z, Szilágyi N, Bobest M, Szikra T, Dobolyi Á, Juhász G, Palkovits M (2006) Concentration of nucleosides and related compounds in cerebral and cerebellar cortical areas and white matter of the human brain. Cell Mol Neurobiol 26:831–842

    Article  CAS  Google Scholar 

  • Kimura T, Ho IK, Yamamoto I (2001) Uridine receptor: discovery and its involvement in sleep mechanism. Sleep 24:251–260

    PubMed  CAS  Google Scholar 

  • King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  PubMed  CAS  Google Scholar 

  • Kirmse K, Dvorzhak A, Grantyn R, Kirischuk S (2008) Developmental downregulation of excitatory GABAergic transmission in neocortical layer I via presynaptic adenosine A(1) receptors. Cereb Cortex 18:424–432

    Article  PubMed  Google Scholar 

  • Kitagawa M, Houzen H, Tashiro K (2007) Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord 22:710–712

    Article  PubMed  Google Scholar 

  • Kittner B, Rossner M, Rother M (1997) Clinical trials in dementia with propentofylline. Ann N Y Acad Sci 826:307–316

    Article  PubMed  CAS  Google Scholar 

  • Klein E, Zohar J, Geraci MF, Murphy DL, Uhde TW (1991) Anxiogenic effects of m-CPP in patients with panic disorder: comparison to caffeine’s anxiogenic effects. Biol Psychiatry 30:973–984

    Article  PubMed  CAS  Google Scholar 

  • Knapp CM, Foye MM, Cottam N, Ciraulo DA, Kornetsky C (2001) Adenosine agonists CGS 21680 and NECA inhibit the initiation of cocaine self-administration. Pharmacol Biochem Behav 68:797–803

    Article  PubMed  CAS  Google Scholar 

  • Kovács Z, Dobolyi A (2011) Functions and metabolism of brain nucleosides and their metabolites. Curr Top Med Chem 11:907–908

    Article  PubMed  Google Scholar 

  • Kovács Z, Dobolyi Á, Szikra T, Palkovits M, Juhász G (1998) Uneven regional distribution of nucleotide metabolism in human brain. Neurobiology (Bp) 6:315–321

    Google Scholar 

  • Kovács Z, Kékesi KA, Bobest M, Török T, Szilágyi N, Szikra T, Szepesi Z, Nyilas R, Dobolyi Á, Palkovits M, Juhász G (2005) Post mortem degradation of nucleosides in the brain: comparison of human and rat brains for estimation of in vivo concentration of nucleosides. J Neurosci Methods 148:88–93

    Article  PubMed  CAS  Google Scholar 

  • Kovács Z, Dobolyi A, Juhász G, Kékesi AK (2010a) Nucleoside map of the human central nervous system. Neurochem Res 35:452–464

    Article  PubMed  CAS  Google Scholar 

  • Kovács Z, Juhász G, Dobolyi A, Bobest M, Papp V, Takáts L, Kékesi KA (2010b) Gender- and age-dependent changes in nucleoside levels in the cerebral cortex and white matter of the human brain. Brain Res Bull 81:579–584

    Article  PubMed  CAS  Google Scholar 

  • Kovács Z, Juhász G, Palkovits M, Dobolyi A, Kékesi KA (2011) Area, age and gender dependence of the nucleoside system in the brain: a review of current literature. Curr Top Med Chem 11:1012–1033

    Article  PubMed  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  PubMed  CAS  Google Scholar 

  • Lajtha A, Sershen H (2010) Heterogeneity of reward mechanisms. Neurochem Res 35:851–867

    Article  PubMed  CAS  Google Scholar 

  • Lam P, Hong CJ, Tsai SJ (2005) Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci Lett 378:98–101

    Article  PubMed  CAS  Google Scholar 

  • Lara DR, Dall’Igna OP, Ghisolfi ES, Brunstein MG (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:617–629

    Article  PubMed  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388:674–678

    Article  PubMed  CAS  Google Scholar 

  • Lehman NL (2002) Future potential of thymidylate synthase inhibitors in cancer therapy. Expert Opin Investig Drugs 11:1775–1787

    Article  PubMed  CAS  Google Scholar 

  • Leist TP, Weissert R (2011) Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol 34:28–35

    Article  PubMed  CAS  Google Scholar 

  • Li RW, Tse CM, Man RY, Vanhoutte PM, Leung GP (2007) Inhibition of human equilibrative nucleoside transporters by dihydropyridine-type calcium channel antagonists. Eur J Pharmacol 568:75–82

    Article  PubMed  CAS  Google Scholar 

  • Lima FO, Souza GR, Verri WA Jr, Parada CA, Ferreira SH, Cunha FQ, Cunha TM (2010) Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 151:506–515

    Article  PubMed  CAS  Google Scholar 

  • Linden J, Rosin DL (2006) Purinergic systems. In: Siegel G, Albers RW, Brady S, Price D (eds) Basic neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier, Academic Press Inc., New York, USA, pp 303–316

    Google Scholar 

  • Linker RA, Kieseier BC, Gold R (2008) Identification and development of new therapeutics for multiple sclerosis. Trends Pharmacol Sci 29:558–565

    Article  PubMed  CAS  Google Scholar 

  • Litsky ML, Hohl CM, Lucas JH, Jurkowitz MS (1999) Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res 821:426–432

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Sheng R, Qin ZH (2009) The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacol Sin 30:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Sebastiao AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Lucas PB, Pickar D, Kelsoe J, Rapaport M, Pato C, Hommer D (1990) Effects of the acute administration of caffeine in patients with schizophrenia. Biol Psychiatry 28:35–40

    Article  PubMed  CAS  Google Scholar 

  • Luthin DR, Linden J (1995) Comparison of A4 and A2A binding sites in striatum and COS cells transfected with adenosine A2A receptors. J Pharmacol Exp Ther 272:511–518

    PubMed  CAS  Google Scholar 

  • Mangravite LM, Badagnani I, Giacomini KM (2003) Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Eur J Pharmacol 479:269–281

    Article  PubMed  CAS  Google Scholar 

  • Markowitz CE, Spitsin S, Zimmerman V, Jacobs D, Udupa JK, Hooper DC, Koprowski H (2009) The treatment of multiple sclerosis with inosine. J Altern Complement Med 15:619–625

    Article  PubMed  Google Scholar 

  • Marro PJ, Mishra OP, Delivoria-Papadopoulos M (2006) Effect of allopurinol on brain adenosine levels during hypoxia in newborn piglets. Brain Res 1073–1074:444–450

    Article  PubMed  CAS  Google Scholar 

  • Martini C, Daniele S, Picchetti M, Panighini A, Carlini M, Trincavelli ML, Cesari D, Da Pozzo E, Golia F, Dell’Osso L (2011) A(2A) adenosine receptor binding parameters in platelets from patients affected by pathological gambling. Neuropsychobiology 63:154–159

    Article  PubMed  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  PubMed  CAS  Google Scholar 

  • Melani A, De Micheli E, Pinna G, Alfieri A, Corte LD, Pedata F (2003) Adenosine extracellular levels in human brain gliomas: an intraoperative microdialysis study. Neurosci Lett 346:93–96

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  PubMed  CAS  Google Scholar 

  • Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, Bauer A (2007) Effect of aging on cerebral A1 adenosine receptors: a [18 F]CPFPX PET study in humans. Neurobiol Aging 28:1914–1924

    Article  PubMed  CAS  Google Scholar 

  • Mielke R, Moller HJ, Erkinjuntti T, Rosenkranz B, Rother M, Kittner B (1998) Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: overview of phase I and phase II clinical trials. Alzheimer Dis Assoc Disord 12(Suppl 2):S29–S35

    PubMed  CAS  Google Scholar 

  • Moreau JL, Huber G (1999) Central adenosine A2A recetors: an overview. Brain Res Rev 31:65–82

    Article  PubMed  CAS  Google Scholar 

  • Müller CE (2003) Medicinal chemistry of adenosine A3 receptor ligands. Curr Top Med Chem 3:445–462

    Article  PubMed  Google Scholar 

  • Myers CS, Fisher H, Wagner GC (1994) Uridine potentiates haloperidol’s disruption of conditioned avoidance responding. Brain Res 651:194–198

    Article  PubMed  CAS  Google Scholar 

  • Nabhan C, Gartenhaus RB, Tallman MS (2004) Purine nucleoside analogues and combination therapies in B-cell chronic lymphocytic leukemia: dawn of a new era. Leuk Res 28:429–442

    Article  PubMed  CAS  Google Scholar 

  • Nagata H, Mimori Y, Nakamura S, Kameyama M (1984) Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine. J Neurochem 42:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Noji T, Karasawa A, Kusaka H (2004) Adenosine uptake inhibitors. Eur J Pharmacol 495:1–16

    Article  PubMed  CAS  Google Scholar 

  • Norstrand IF, Glantz MD (1980) Topographical distribution of purine nucleoside phosphorylase in the human neuraxis. Enzyme 25:118–122

    PubMed  CAS  Google Scholar 

  • Norstrand IF, Siverls VC, Libbin RM (1984) Regional distribution of adenosine deaminase in the human neuraxis. Enzyme 32:20–25

    PubMed  CAS  Google Scholar 

  • O’Regan M (2005) Adenosine and the regulation of cerebral blood flow. Neurol Res 27:175–181

    Article  PubMed  Google Scholar 

  • Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95:13290–13295

    Article  PubMed  Google Scholar 

  • Parkinson FE, Damaraju VL, Graham K, Yao SYM, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Anglada M, Cano-Soldado P, Molina-Arcas M, Lostao MP, Larráyoz I, Martinez-Picado J, Casado JF (2005) Cell entry and export of nucleoside analogues. Virus Res 107:151–164

    Article  PubMed  CAS  Google Scholar 

  • Paul T, Pfammatter JP (1997) Adenosine: an effective and safe antiarrhythmic drug in pediatrics. Pediatr Cardiol 18:118–126

    Article  PubMed  CAS  Google Scholar 

  • Pearce L, Ghosh J, Counsell A, Serracino-Inglott F (2008) Cilostazol and peripheral arterial disease. Expert Opin Pharmacother 9:2683–2690

    Article  PubMed  CAS  Google Scholar 

  • Pennycooke M, Chaudary N, Shuralyova I, Zhang Y, Coe IR (2001) Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 280:951–959

    Article  PubMed  CAS  Google Scholar 

  • Peskind ER (1996) Neurobiology of Alzheimer’s disease. J Clin Psychiatry 57(Suppl 14):5–8

    PubMed  Google Scholar 

  • Peterman C, Sanoski CA (2005) Tecadenoson: a novel, selective A1 adenosine receptor agonist. Cardiol Rev 13:315–321

    Article  PubMed  Google Scholar 

  • Pettifer KM, Kleywegt S, Bau CJ, Ramsbottom JD, Vertes E, Ciccarelli R, Caciagli F, Werstiuk ES, Rathbone MP (2004) Guanosine protects SH-SY5Y cells against beta-amyloid-induced apoptosis. Neuroreport 15:833–836

    Article  PubMed  CAS  Google Scholar 

  • Phillips E, Newsholme EA (1979) Maximum activities, properties and distribution of 5’-nucleotidase, adenosine kinase and adenosine deaminase in rat and human brain. J Neurochem 33:553–558

    Article  PubMed  CAS  Google Scholar 

  • Piccoli F, Camarda R, Bonavita V (1971) The brain nucleotide pattern of the rat after injection of uracil, uridine and uridine phosphate. Acta Neurol (Napoli) 26:109–117

    CAS  Google Scholar 

  • Pinna A (2009) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631

    Article  PubMed  CAS  Google Scholar 

  • Podgorska M, Kocbuch K, Pawelczyk T (2005) Recent advences in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol 52:749–758

    PubMed  CAS  Google Scholar 

  • Popoli P, Blum D, Martine A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81:331–348

    Article  PubMed  CAS  Google Scholar 

  • Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    Article  PubMed  Google Scholar 

  • Radulovacki M (1985) Role of adenosine in sleep in rats. Rev Clin Basic Pharm 5:327–339

    PubMed  CAS  Google Scholar 

  • Rando RF, Nguyen-Ba N (2000) Development of novel nucleoside analogues for use against drug rersisitant strains of HIV-1. Drug Discov Today 5:465–476

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastiao AM, de Mendonca A (2003) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  Google Scholar 

  • Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545

    Article  PubMed  CAS  Google Scholar 

  • Ritzel MWL, Ng AML, Yao SYM, Graham K, Loewen SK, Smith KM, Ritzel RG, Mowles DA, Carpenter P, Chen XZ, Karpinski E, Hyde RJ, Baldwin SA, Cass CE, Young JD (2001) Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 276:2914–2927

    Article  PubMed  CAS  Google Scholar 

  • Robak T, Korycka A, Lech-Maranda E, Robak P (2009) Current status of older and new purine nucleoside analogues in the treatment of lymphoproliferative diseases. Molecules 14:1183–1226

    Article  PubMed  CAS  Google Scholar 

  • Roberts CA (1973) Anticonvulsant effects of uridine: comparative analysis of metrazol and penicillin induced foci. Brain Res 55:291–308

    Article  PubMed  CAS  Google Scholar 

  • Roberts CA, Kreisman NR, Waltman M (1974) Uridine anticonvulsant effects: selective control of nucleoside incorporation in experimental epilepsy. Epilepsia 15:479–500

    Article  PubMed  CAS  Google Scholar 

  • Roesler R, Vianna MR, Lara DR, Izquierdo I, Schmidt AP, Souza DO (2000) Guanosine impairs inhibitory avoidance performance in rats. Neuroreport 11:2537–2540

    Article  PubMed  CAS  Google Scholar 

  • Roos RA, Bots GT, Hermans J (1985) Neuronal nuclear membrane indentation and astrocyte/neuron ratio in Huntington’s disease. A quantitative electron microscopic study. J Hirnforsch 26:689–693

    PubMed  CAS  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    Article  PubMed  CAS  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4:346–369

    PubMed  CAS  Google Scholar 

  • Saper CB (2006) Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 153:243–252

    Article  PubMed  CAS  Google Scholar 

  • Saute JA, da Silveira LE, Soares FA, Martini LH, Souza DO, Ganzella M (2006) Amnesic effect of GMP depends on its conversion to guanosine. Neurobiol Learn Mem 85:206–212

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferré S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AP, Lara DR, de Faria Maraschin J, da Silveira Perla A, Souza DO (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Therapeut 116:401–416

    Article  CAS  Google Scholar 

  • Schmidt AP, Böhmer AE, Schallenberger C, Antunes C, Pereira MS, Leke R, Wofchuk ST, Elisabetsky E, Souza DO (2009) Spinal mechanisms of antinociceptive action caused by guanosine in mice. Eur J Pharmacol 613:46–53

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Chen GJ, Harvey BK, Bickford PC, Wang Y (2005) Inosine reduces ischemic brain injury in rats. Stroke 36:654–659

    Article  PubMed  CAS  Google Scholar 

  • Sperlágh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and Basal Ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11:1034–1046

    Article  PubMed  Google Scholar 

  • Spiers PA, Myers D, Hochanadel GS, Lieberman HR, Wurtman RJ (1996) Citicoline improves verbal memory in aging. Arch Neurol 53:441–448

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (2002) Purines and neuroprotection. Adv Exp Med Biol 513:249–280

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335

    Article  PubMed  CAS  Google Scholar 

  • Teather LA, Wurtman RJ (2003) Dietary cytidine (5’)-diphosphocholine supplementation protects against development of memory deficits in aging rats. Prog Neuropsychopharmacol Biol Psychiatry 27:711–717

    Article  PubMed  CAS  Google Scholar 

  • Teather LA, Wurtman RJ (2005) Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats. Learn Mem 12:39–43

    Article  PubMed  Google Scholar 

  • Teather LA, Wurtman RJ (2006) Chronic administration of UMP ameliorates the impairment of hippocampal-dependent memory in impoverished rats. J Nutr 136:2834–2837

    PubMed  CAS  Google Scholar 

  • Togha M, Akhondzadeh S, Motamedi M, Ahmadi B, Razeghi S (2007) Allopurinol as adjunctive therapy in intractable epilepsy: a double-blind and placebo-controlled trial. Arch Med Res 38:313–316

    Article  PubMed  CAS  Google Scholar 

  • Tomassoni D, Lanari A, Silvestrelli G, Traini E, Amenta F (2008) Nimodipine and its use in cerebrovascular disease: evidence from recent preclinical and controlled clinical studies. Clin Exp Hypertens 30:744–766

    Article  PubMed  CAS  Google Scholar 

  • Tort AB, Mantese CE, dos Anjos GM, Dietrich MO, Dall’Igna OP, Souza DO, Lara DR (2004) Guanosine selectively inhibits locomotor stimulation induced by the NMDA antagonist dizocilpine. Behav Brain Res 154:417–422

    Article  PubMed  CAS  Google Scholar 

  • Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

    Article  PubMed  CAS  Google Scholar 

  • Traversa U, Bombi G, Di Iorio P, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135:969–976

    Article  PubMed  CAS  Google Scholar 

  • Tsai SJ, Hong CJ, Hou SJ, Yen FC (2006) Association study of adenosine A2a receptor (1976 C  >  T) genetic polymorphism and mood disorders and age of onset. Psychiatr Genet 16:185

    Article  PubMed  Google Scholar 

  • Tucker AL, Linden J (1993) Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 27:62–67

    Article  PubMed  CAS  Google Scholar 

  • Van der Beek EM, Kamphuis P (2008) The potential role of nutritional components in the management of Alzheimer’s Disease. Eur J Pharmacol 585:197–207

    Article  PubMed  CAS  Google Scholar 

  • Van Rompay AR, Johansson M, Karlsson A (2003) Substrate specificity and phosphorylation of antiviral and anticancer nucleoside analogues by human deoxyribonucleoside kinases and ribonucleoside kinases. Pharmacol Therapeut 100:119–139

    Article  CAS  Google Scholar 

  • Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA (2000) [(3)H]MRE 3008 F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A(3) adenosine receptors. Mol Pharmacol 57:968–975

    PubMed  CAS  Google Scholar 

  • Vinadé ER, Schmidt AP, Frizzo ME, Izquierdo I, Elisabetsky E, Souza DO (2003) Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res 977:97–102

    Article  PubMed  CAS  Google Scholar 

  • Volonté C, D’Ambrosi N (2009) Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276:318–329

    Article  PubMed  CAS  Google Scholar 

  • Volpini R, Costanzi S, Vittori S, Cristalli G, Klotz KN (2003) Medicinal chemistry and pharmacology of A2B adenosine receptors. Curr Top Med Chem 3:427–443

    Article  PubMed  CAS  Google Scholar 

  • Von Lubitz DK (2001) Adenosine in the treatment of stroke: yes, maybe, or absolutely not? Expert Opin Investig Drugs 10:619–632

    Article  Google Scholar 

  • Wardas J (2002) Neuroprotective role of adenosine in the CNS. Pol J Pharmacol 54:313–326

    PubMed  CAS  Google Scholar 

  • Warnke C, Wiendl H, Hartung HP, Stüve O, Kieseier BC (2010) Identification of targets and new developments in the treatment of multiple sclerosis–focus on cladribine. Drug Des Devel Ther 4:117–126

    PubMed  CAS  Google Scholar 

  • Weber G, Prajda N (1994) Targeted and non-targeted actions of anti-cancer drugs. Adv Enzyme Regul 34:71–89

    Article  PubMed  CAS  Google Scholar 

  • Weber G, Ichikawa S, Nagai M, Natsumeda Y (1990) Azidothymidine inhibition of thymidine kinase and synergistic cytotoxicity with methotrexate and 5-fluorouracil in rat hepatoma and human colon cancer cells. Cancer Commun 2:129–133

    PubMed  CAS  Google Scholar 

  • Weerts EM, Griffiths RR (2003) The adenosine receptor antagonist CGS15943 reinstates cocaine-seeking behavior and maintains self-administration in baboons. Psychopharmacology (Berl) 168:155–163

    Article  CAS  Google Scholar 

  • Weyrich AS, Skalabrin EJ, Kraiss LW (2009) Targeting the inflammatory response in secondary stroke prevention: a role for combining aspirin and extended-release dipyridamole. Am J Ther 16:164–170

    Article  PubMed  Google Scholar 

  • Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP, Gruber HE, Foster AC, Erion MD (1999) Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 289:1669–1677

    PubMed  CAS  Google Scholar 

  • Willis RC, Carson DA, Seegmiller JE (1978) Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line. Proc Natl Acad Sci USA 75:3042–3044

    Article  PubMed  CAS  Google Scholar 

  • Willuhn I, Wanat MJ, Clark JJ, Phillips PE (2010) Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 3:29–71

    Article  PubMed  Google Scholar 

  • Wurtman RJ, Regan M, Ulus I, Yu L (2000) Effect of oral CDP-choline on plasma choline and uridine levels in humans. Biochem Pharmacol 60:989–992

    Article  PubMed  CAS  Google Scholar 

  • Wurtman RJ, Cansev M, Sakamoto T, Ulus IH (2009) Use of phosphatide precursors to promote synaptogenesis. Annu Rev Nutr 29:59–87

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapautic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    Article  PubMed  CAS  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  PubMed  CAS  Google Scholar 

  • Zapor MJ, Cozza KL, Wynn GH, Wortmann GW, Armstrong SC (2004) Antiretrovirals, part II: focus on non-protease inhibitor antiretrovirals (NRTIs, NNRTIs, and fusion inhibitors). Psychosomatics 45:524–535

    Article  PubMed  CAS  Google Scholar 

  • Zaza A (2002) CVT-510 (CV Therapeutics). Curr Opin Investig Drugs 3:96–100

    PubMed  CAS  Google Scholar 

  • Zhao Q, Marolewski A, Rusche JR, Holmes GL (2006) Effects of uridine in models of epileptogenesis and seizures. Epilepsy Res 70:73–82

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Shatskikh T, Marolewski A, Rusche JR, Holmes GL (2008) Effects of uridine on kindling. Epilepsy Behav 13:47–51

    Article  PubMed  Google Scholar 

  • Zimmermann H (1996) Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol 49:589–618

    Article  PubMed  CAS  Google Scholar 

  • Zoref-Shani E, Bromberg Y, Lilling G, Gozes I, Brosh S, Sidi Y, Sperling O (1995) Developmental changes in purine nucleotide metabolism in cultured rat astroglia. Int J Dev Neurosci 13:887–896

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Foundation of NYME SEK/NYME SEK TTK (2010–2011) Hungary (Zsolt Kovács) and the OTKA NNF2 85612 Research Grant as well as the Bolyai János Grant of the Hungarian Academy of Sciences (Arpád Dobolyi).

Conflict of interest: All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Kovács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kovács, Z., Dobolyi, A. (2013). Anatomical Distribution of Nucleoside System in the Human Brain and Implications for Therapy. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_29

Download citation

Publish with us

Policies and ethics