Skip to main content

Adenosine Receptors and Alzheimer’s Disease

  • Chapter
  • First Online:
Adenosine

Abstract

Alzheimer’s disease (AD) is the most prevalent form of dementia in the aged population. Definitive diagnosis of AD is based on the presence of senile plaques and neurofibrillary tangles that are identified in post-mortem brain specimens. The formation of these AD-specific lesions is attributed to the pathological accumulation of either extracellular amyloid beta (Aβ) peptide or intraneuronal hyperphosphorylated Tau protein. The AD brain is also characterized by astrogliosis and inflammation. Sporadic AD results from multiple genetic and environmental risk factors. Prospective, retrospective epidemiological studies and experimental findings have identified chronic caffeine consumption as a protective factor. Caffeine effects would essentially result from modulation of the adenosine system. In this frame, the present review aims to discuss the role of adenosinergic system and in particular involvement of the A2AR in AD pathology and associated cognitive impairments. We also discuss the apparent paradox in regards to A2AR blockade and the aforementioned protective effects versus the disruption of specific biochemical processes that influence hippocampal synaptic plasticity, BDNF/TrkB signaling and acetylcholine release, all being associated with AD physiopathology. As an alternative to targeting specific pathways a more effective option to treat AD may be achieved by utilizing novel treatment strategies that restore adenosine homeostasis in the diseased brain. Thus, prior to exploring the efficacy of A2AR blockade as a therapeutic option for AD, we conclude that a better understanding of adenosine signaling in AD is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinho PM, Matos M, Augusto E, Rodrigues A, Cunha RA (2011) Amyloid-beta inhibits the astrocytic glutamate uptake through a mechanism involving adenosine A2A receptor activation. AD/PD meeting, 2011, Barcelona

    Google Scholar 

  • Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, Albert M, Brandt J, Stern Y (2006) Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 47:867–872

    Article  PubMed  Google Scholar 

  • Amieva H, Jacqmin-Gadda H, Orgogozo JM, Le Carret N, Helmer C, Letenneur L, Barberger-Gateau P, Fabrigoule C, Dartigues JF (2005) The 9 year cognitive decline before dementia of the Alzheimer type: a prospective population-based study. Brain 128:1093–1101

    Article  PubMed  Google Scholar 

  • Angulo E, Casado V, Mallol J, Canela EI, Vinals F, Ferrer I, Lluis C, Franco R (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17:661–680

    PubMed  CAS  Google Scholar 

  • Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Chao MV, Sebastiao AM (2010) Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: implications for neuromodulation. J Neurosci 30:8468–8480

    Article  PubMed  CAS  Google Scholar 

  • Attems J, Jellinger KA (2006) Hippocampal sclerosis in Alzheimer disease and other dementias. Neurology 66:775

    Article  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Beach TG, Sue L, Scott S, Layne K, Newell A, Walker D, Baker M, Sahara N, Yen SH, Hutton M et al (2003) Hippocampal sclerosis dementia with tauopathy. Brain Pathol 13:263–278

    Article  PubMed  Google Scholar 

  • Belarbi K, Burnouf S, Fernandez-Gomez FJ, Laurent C, Lestavel S, Figeac M, Sultan A, Troquier L, Leboucher A, Caillierez R et al (2011) Beneficial effects of exercise in a transgenic mouse model of Alzheimer’s disease-like Tau pathology. Neurobiol Dis 43:486–494

    Article  PubMed  CAS  Google Scholar 

  • Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165:1643–1652

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Burnouf S, Martire A, Belarbi K, Laurent C, Muhr-Tailleux A, Van der Jeugd A, Leboucher A, Fernandez-gomez F, Troquier L et al (2011) Impairment of BDNF-mediated hippocampal synaptic facilitation in a transgenic model of Alzheimer’s disease-like Tau pathology. Society for neuroscience meeting, San Diego, 2010

    Google Scholar 

  • Boison D (2008) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2011) Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem 11:1068–1086

    Article  PubMed  CAS  Google Scholar 

  • Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    Article  PubMed  Google Scholar 

  • Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429:139–142

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, James S, Reddington M, Richardson PJ (1990) Both A1 and A2a purine receptors regulate striatal acetylcholine release. J Neurochem 55:31–38

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    PubMed  CAS  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  CAS  Google Scholar 

  • Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467

    Article  PubMed  CAS  Google Scholar 

  • Canas PM, Porciuncula LO, Cunha GM, Silva CG, Machado NJ, Oliveira JM, Oliveira CR, Cunha RA (2009) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  PubMed  CAS  Google Scholar 

  • Checler F (1995) Processing of the beta-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 65:1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Cognato GP, Agostinho PM, Hockemeyer J, Muller CE, Souza DO, Cunha RA (2010) Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112:453–462

    Article  PubMed  CAS  Google Scholar 

  • Costa MS, Botton PH, Mioranzza S, Souza DO, Porciuncula LO (2008) Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice. Neuroscience 153:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Costenla AR, Cunha RA, de Mendonca A (2010) Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis 20(Suppl 1):S25–S34

    PubMed  CAS  Google Scholar 

  • Cunha RA (2008) Caffeine, adenosine receptors, memory and Alzheimer disease. Med Clin (Barc) 131:790–795

    Article  Google Scholar 

  • Cunha RA, Johansson B, van der Ploeg I, Sebastiao AM, Ribeiro JA, Fredholm BB (1994) Evidence for functionally important adenosine A2a receptors in the rat hippocampus. Brain Res 649:208–216

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Constantino MC, Sebastiao AM, Ribeiro JA (1995) Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Almeida T, Ribeiro JA (2001) Parallel modification of adenosine extracellular metabolism and modulatory action in the hippocampus of aged rats. J Neurochem 76:372–382

    Article  PubMed  CAS  Google Scholar 

  • Cunha GM, Canas PM, Oliveira CR, Cunha RA (2006) Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience 141:1775–1781

    Article  PubMed  CAS  Google Scholar 

  • Cunha GM, Canas PM, Melo CS, Hockemeyer J, Muller CE, Oliveira CR, Cunha RA (2008) Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 210:776–781

    Article  PubMed  CAS  Google Scholar 

  • Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1

    PubMed  Google Scholar 

  • Currais A, Kato K, Canuet L, Ishii R, Tanaka T, Takeda M, Soriano S (2011) Caffeine modulates tau phosphorylation and affects Akt signaling in postmitotic neurons. J Mol Neurosci 43:326–332

    Article  PubMed  CAS  Google Scholar 

  • Dai SS, Li W, An JH, Wang H, Yang N, Chen XY, Zhao Y, Li P, Liu P, Chen JF et al (2010a) Adenosine A2A receptors in both bone marrow cells and non-bone marrow cells contribute to traumatic brain injury. J Neurochem 113:1536–1544

    PubMed  CAS  Google Scholar 

  • Dai SS, Zhou YG, Li W, An JH, Li P, Yang N, Chen XY, Xiong RP, Liu P, Zhao Y et al (2010b) Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 30:5802–5810

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • de Mendonca A, Cunha RA (2010) Therapeutic opportunities for caffeine in Alzheimer’s disease and other neurodegenerative disorders. J Alzheimers Dis 20(Suppl 1):S1–S2

    PubMed  Google Scholar 

  • de Mendonca A, Ribeiro JA (1994) Endogenous adenosine modulates long-term potentiation in the hippocampus. Neuroscience 62:385–390

    Article  PubMed  Google Scholar 

  • De Strooper B (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90:465–494

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  PubMed  CAS  Google Scholar 

  • Del Vecchio RA, Gold LH, Novick SJ, Wong G, Hyde LA (2004) Increased seizure threshold and severity in young transgenic CRND8 mice. Neurosci Lett 367:164–167

    Article  PubMed  CAS  Google Scholar 

  • Dias RB, Ribeiro JA, Sebastiao AM (2010) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22:276–291

    Article  PubMed  CAS  Google Scholar 

  • Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Diogenes MJ, Costenla AR, Lopes LV, Jeronimo-Santos A, Sousa VC, Fontinha BM, Ribeiro JA, Sebastiao AM (2011) Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 36:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Dostal V, Roberts CM, Link CD (2010) Genetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of beta-amyloid peptide toxicity. Genetics 186:857–866

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts C, Bennecib M, Grignon Y, Uchihara T, He Y, Piette F, Hauw JJ (1997) Modeling the relation between neurofibrillary tangles and intellectual status. Neurobiol Aging 18:267–273

    Article  PubMed  CAS  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  CAS  Google Scholar 

  • Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S167–S174

    PubMed  CAS  Google Scholar 

  • Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91

    PubMed  CAS  Google Scholar 

  • Espana J, Valero J, Minano-Molina AJ, Masgrau R, Martin E, Guardia-Laguarta C, Lleo A, Gimenez-Llort L, Rodriguez-Alvarez J, Saura CA (2010) beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 30:9402–9410

    PubMed  CAS  Google Scholar 

  • Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Schmidt AM, Chen JX et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24:1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Fiebich BL, Biber K, Lieb K, van Calker D, Berger M, Bauer J, Gebicke-Haerter PJ (1996) Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors. Glia 18:152–160

    Article  PubMed  CAS  Google Scholar 

  • Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872

    Article  PubMed  CAS  Google Scholar 

  • Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924–933

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  • Georgiev V, Johansson B, Fredholm BB (1993) Long-term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res 612:271–277

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M, Canals M, Terasmaa A, Fernandez-Teruel A, Tobena A et al (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87:42–56

    Article  PubMed  CAS  Google Scholar 

  • Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  CAS  Google Scholar 

  • Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  PubMed  CAS  Google Scholar 

  • Gorlovoy P, Larionov S, Pham TT, Neumann H (2009) Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB J 23:2502–2513

    Article  PubMed  CAS  Google Scholar 

  • Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S et al (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Grober E, Dickson D, Sliwinski MJ, Buschke H, Katz M, Crystal H, Lipton RB (1999) Memory and mental status correlates of modified Braak staging. Neurobiol Aging 20:573–579

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989

    Article  PubMed  CAS  Google Scholar 

  • Haskell CF, Kennedy DO, Wesnes KA, Scholey AB (2005) Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology (Berl) 179:813–825

    Article  CAS  Google Scholar 

  • Hasko G, Pacher P, Vizi ES, Illes P (2005) Adenosine receptor signaling in the brain immune system. Trends Pharmacol Sci 26:511–516

    Article  PubMed  CAS  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  PubMed  CAS  Google Scholar 

  • Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D, Gordon MN (2004) Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 190:245–253

    Article  PubMed  CAS  Google Scholar 

  • Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    Article  PubMed  CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233

    Article  PubMed  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Fredholm BB (1997) Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedebergs Arch Pharmacol 355:48–56

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Georgiev V, Lindstrom K, Fredholm BB (1997) A1 and A2A adenosine receptors and A1 mRNA in mouse brain: effect of long-term caffeine treatment. Brain Res 762:153–164

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D (2002) Coffee consumption and cognitive function among older adults. Am J Epidemiol 156:842–850

    Article  PubMed  Google Scholar 

  • Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248:9–15

    Article  PubMed  CAS  Google Scholar 

  • Kaplan GB, Greenblatt DJ, Leduc BW, Thompson ML, Shader RI (1989) Relationship of plasma and brain concentrations of caffeine and metabolites to benzodiazepine receptor binding and locomotor activity. J Pharmacol Exp Ther 248:1078–1083

    PubMed  CAS  Google Scholar 

  • Ke RH, Xiong J, Liu Y, Ye ZR (2009) Adenosine A2a receptor induced gliosis via Akt/NF-kappaB pathway in vitro. Neurosci Res 65:280–285

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853

    Article  PubMed  CAS  Google Scholar 

  • Kurt MA, Davies DC, Kidd M (1999) beta-Amyloid immunoreactivity in astrocytes in Alzheimer’s disease brain biopsies: an electron microscope study. Exp Neurol 158:221–228

    Article  PubMed  CAS  Google Scholar 

  • La Rue A (2010) Healthy brain aging: role of cognitive reserve, cognitive stimulation, and cognitive exercises. Clin Geriatr Med 26:99–111

    Article  PubMed  Google Scholar 

  • Lambert JC, Amouyel P (2011) Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21:295–301

    Article  PubMed  CAS  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA 98:3555–3560

    Article  PubMed  CAS  Google Scholar 

  • Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D (2010a) LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 7:56

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, Lamb BT (2010b) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 177:2549–2562

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Liu L, Barger SW, Griffin WS (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23:1605–1611

    PubMed  CAS  Google Scholar 

  • Li W, Dai S, An J, Li X, Chen X, Xiong R, Liu P, Wang H, Zhao Y, Zhu M, Liu X, Zhu P, Chen JF, Zhou Y (2008) Chronic but not acute treatment with cafeine attenuates traumatic brain injury in the mouse cortical impact model. Neuroscience 151:1198–1207

    Article  PubMed  CAS  Google Scholar 

  • Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787

    Article  PubMed  CAS  Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453

    Article  PubMed  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999) Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203

    PubMed  CAS  Google Scholar 

  • Lopes LV, Sebastiao AM, Ribeiro JA (2011) Adenosine and related drugs in brain diseases: present and future in clinical trials. Curr Top Med Chem 11:1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53:82–94

    Article  PubMed  Google Scholar 

  • Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382

    Article  PubMed  CAS  Google Scholar 

  • Marques S, Batalha VL, Lopes LV, Outeiro TF (2011) Modulating Alzheimer’s disease through caffeine: a putative link to epigenetics. J Alzheimers Dis 24:161–171

    PubMed  CAS  Google Scholar 

  • Menendez M (2005) Down syndrome, Alzheimer’s disease and seizures. Brain Dev 27:246–252

    Article  PubMed  Google Scholar 

  • Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fulop L, Penke B, Zilberter Y, Harkany T, Pitkanen A et al (2009) Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci 29:3453–3462

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA (2007) Role of adenosine A2A receptors in parkinsonian motor impairment and l-DOPA-induced motor complications. Prog Neurobiol 83:293–309

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Carta AR, Jenner P (2009) Adenosine A2A receptors and Parkinson’s disease. Handb Exp Pharmacol 589–615

    Google Scholar 

  • Muller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308

    Article  PubMed  CAS  Google Scholar 

  • Naert G, Rivest S (2011) CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:6208–6220

    Article  PubMed  CAS  Google Scholar 

  • Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94:100–102

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA (2000) Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    PubMed  CAS  Google Scholar 

  • Nygaard TG, Duvoisin RC, Manocha M, Chokroverty S (1989) Seizures in progressive supranuclear palsy. Neurology 39:138–140

    Article  PubMed  CAS  Google Scholar 

  • Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A(2A) receptor mediates microglial process retraction. Nat Neurosci 12:872–878

    Article  PubMed  CAS  Google Scholar 

  • Palop JJ, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440

    Article  PubMed  Google Scholar 

  • Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, Sanz-Anquela JM, Ortega J, Rodriguez M, Gonzalo-Ruiz A (2010) Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 223:410–421

    Article  PubMed  CAS  Google Scholar 

  • Pinna A (2009) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631

    Article  PubMed  CAS  Google Scholar 

  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29:10741–10749

    Article  PubMed  CAS  Google Scholar 

  • Prasanthi JR, Dasari B, Marwarha G, Larson T, Chen X, Geiger JD, Ghribi O (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49:1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Rahman A (2009) The role of adenosine in Alzheimer’s disease. Curr Neuropharmacol 7:207–216

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Sebastiao AM, de Mendonca A, Oliveira CR, Ribeiro JA, Cunha RA (2003) Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 90:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133:79–83

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Simoes AP, Canas PM, Tome AR, Andrade GM, Barry CE, Agostinho PM, Lynch MA, Cunha RA (2011) Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 117:100–111

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastiao AM (2010) Modulation and metamodulation of synapses by adenosine. Acta Physiol (Oxf) 199:161–169

    Article  CAS  Google Scholar 

  • Riksen NP, Rongen GA, Smits P (2009) Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther 121:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ritchie K, Artero S, Touchon J (2001) Classification criteria for mild cognitive impairment: a population-based validation study. Neurology 56:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues RJ, Canas PM, Lopes LV, Oliveira CR, Cunha RA (2008) Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiol Aging 29:1597–1601

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Kawarabayashi T, Murakami T, Matsubara E, Ikeda M, Hagiwara H, Westaway D, George-Hyslop PS, Shoji M, Nakazato Y (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168

    Article  PubMed  CAS  Google Scholar 

  • Saura J, Angulo E, Ejarque A, Casado V, Tusell JM, Moratalla R, Chen JF, Schwarzschild MA, Lluis C, Franco R et al (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95:919–929

    Article  PubMed  CAS  Google Scholar 

  • Sawyer DA, Julia HL, Turin AC (1982) Caffeine and human behavior: arousal, anxiety, and performance effects. J Behav Med 5:415–439

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616

    Article  PubMed  CAS  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–654

    Article  PubMed  CAS  Google Scholar 

  • Sebastiao AM, Ribeiro JA (1992) Evidence for the presence of excitatory A2 adenosine receptors in the rat hippocampus. Neurosci Lett 138:41–44

    Article  PubMed  CAS  Google Scholar 

  • Sebastiao AM, Ribeiro JA (2009) Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 7:180–194

    Article  PubMed  CAS  Google Scholar 

  • Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E et al (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5:207–224

    Article  PubMed  CAS  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1994) S100 beta protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39:398–404

    Article  PubMed  CAS  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  PubMed  CAS  Google Scholar 

  • Simola N, Morelli M, Pinna A (2008) Adenosine A2A receptor antagonists and Parkinson’s disease: state of the art and future directions. Curr Pharm Des 14:1475–1489

    Article  PubMed  CAS  Google Scholar 

  • Smit HJ, Rogers PJ (2000) Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology (Berl) 152:167–173

    Article  CAS  Google Scholar 

  • Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B (2011) In vitro modelling of Alzheimer’s disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 229:226–237

    Article  PubMed  CAS  Google Scholar 

  • Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632

    Article  PubMed  CAS  Google Scholar 

  • Tebano MT, Martire A, Chiodi V, Ferrante A, Popoli P (2010) Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: a possible key mechanism in the pathophysiology of Huntington’s disease. ScientificWorldJournal 10:1768–1782

    Article  PubMed  CAS  Google Scholar 

  • Thomas RJ (1997) Seizures and epilepsy in the elderly. Arch Intern Med 157:605–617

    Article  PubMed  CAS  Google Scholar 

  • Trinh K, Andrews L, Krause J, Hanak T, Lee D, Gelb M, Pallanck L (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci 30:5525–5532

    Article  PubMed  CAS  Google Scholar 

  • Van der Jeugd A, Ahmed T, Burnouf S, Belarbi K, Hamdame M, Grosjean ME, Humez S, Balschun D, Blum D, Buee L et al (2011) Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission. Neurobiol Learn Mem 95:296–304

    Article  PubMed  Google Scholar 

  • Van Eldik LJ, Griffin WS (1994) S100 beta expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim Biophys Acta 1223:398–403

    Article  PubMed  Google Scholar 

  • van Gelder BM, Buijsse B, Tijhuis M, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study. Eur J Clin Nutr 61:226–232

    Article  PubMed  Google Scholar 

  • Wang JH, Ma YY, van den Buuse M (2006) Improved spatial recognition memory in mice lacking adenosine A2A receptors. Exp Neurol 199:438–445

    Article  PubMed  CAS  Google Scholar 

  • Wegiel J, Imaki H, Wang KC, Wronska A, Osuchowski M, Rubenstein R (2003) Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol 105:393–402

    PubMed  Google Scholar 

  • Wei CJ, Li W, Chen JF (2011) Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 1808:1358–1379

    Article  PubMed  CAS  Google Scholar 

  • Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

    PubMed  CAS  Google Scholar 

  • Wharton SB, O’Callaghan JP, Savva GM, Nicoll JA, Matthews F, Simpson JE, Forster G, Shaw PJ, Brayne C, Ince PG (2009) Population variation in glial fibrillary acidic protein levels in brain ageing: relationship to Alzheimer-type pathology and dementia. Dement Geriatr Cogn Disord 27:465–473

    Article  PubMed  CAS  Google Scholar 

  • Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci USA 104:17210–17215

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski HM, Wegiel J (1991) Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 12:593–600

    Article  PubMed  CAS  Google Scholar 

  • Wittchen HU, Jacobi F (2005) Size and burden of mental disorders in Europe―a critical review and appraisal of 27 studies. Eur Neuropsychopharmacol 15:357–376

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

    PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Bastia E, Schwarzschild M (2005) Therapeutic potential of adenosine A(2A) receptor antagonists in Parkinson’s disease. Pharmacol Ther 105:267–310

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Singer P, Chen JF, Feldon J, Boison D (2007) Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur J Neurosci 26:3237–3252

    Article  PubMed  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Shen HY, Coelho JE, Araujo IM, Huang QY, Day YJ, Rebola N, Canas PM, Rapp EK, Ferrara J et al (2008) Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann Neurol 63:338–346

    Article  PubMed  CAS  Google Scholar 

  • Zhou SJ, Zhu ME, Shu D, Du XP, Song XH, Wang XT, Zheng RY, Cai XH, Chen JF, He JC (2009) Preferential enhancement of working memory in mice lacking adenosine A(2A) receptors. Brain Res 1303:74–83

    Article  PubMed  CAS  Google Scholar 

  • Zilka N, Stozicka Z, Kovac A, Pilipcinec E, Bugos O, Novak M (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol 209:16–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Blum or Luísa V. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blum, D. et al. (2013). Adenosine Receptors and Alzheimer’s Disease. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_19

Download citation

Publish with us

Policies and ethics