Computer Vision for the Solar Dynamics Observatory (SDO)

  • P. C. H. Martens
  • G. D. R. Attrill
  • A. R. Davey
  • A. Engell
  • S. Farid
  • P. C. Grigis
  • J. Kasper
  • K. Korreck
  • S. H. Saar
  • A. Savcheva
  • Y. Su
  • P. Testa
  • M. Wills-Davey
  • P. N. Bernasconi
  • N.-E. Raouafi
  • V. A. Delouille
  • J. F. Hochedez
  • J. W. Cirtain
  • C. E. DeForest
  • R. A. Angryk
  • I. De Moortel
  • T. Wiegelmann
  • M. K. Georgoulis
  • R. T. J. McAteer
  • R. P. Timmons

Abstract

In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).

Keywords

Instrumentation and data management Solar Dynamics Observatory 

References

  1. Aly, J.J.: 1989, On the reconstruction of the nonlinear force-free coronal magnetic field from boundary data. Solar Phys. 120, 19 – 48. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K., Dahlburg, R.B., Klimchuk, J.A.: 1994, The magnetic field of solar prominences. Astrophys. J. 420, 41 – 44. doi:10.1086/187158. ADSCrossRefGoogle Scholar
  3. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485 – 493. doi:10.1086/306563. ADSCrossRefGoogle Scholar
  4. Asai, A., Ishii, T.T., Kurokawa, H., Yokoyama, T., Shimojo, M.: 2003, Evolution of conjugate footpoints inside flare ribbons during a great two-ribbon flare on 2001 April 10. Astrophys. J. 586, 624 – 629. doi:10.1086/367694. ADSCrossRefGoogle Scholar
  5. Attrill, G.D.R., Wills-Davey, M.J.: 2010, Automatic detection and extraction of coronal dimmings from SDO/AIA data. Solar Phys. 262, 461 – 480. doi:10.1007/s11207-009-9444-4. ADSCrossRefGoogle Scholar
  6. Banda, J.M., Angryk, R.: 2009, On the effectiveness of fuzzy clustering as a data discretization technique for large-scale classification of solar images. In: Feng, G.G. (ed.) Proceedings of the 18th IEEE International Conference on Fuzzy Systems, FUZZ-IEEE ’09, IEEE, New York, 2019 – 2024. doi:10.1109/FUZZY.2009.5277273. Google Scholar
  7. Barra, V., Delouille, V., Hochedez, J.F.: 2008, Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering. Adv. Space Res. 42, 917 – 925. doi:10.1016/j.asr.2007.10.021. ADSCrossRefGoogle Scholar
  8. Barra, V., Delouille, V., Hochedez, J.F., Chainais, P.: 2005, Segmentation of EIT images using fuzzy clustering: a preliminary study. In: Danesy, D., Poedts, S., De Groof, A., Andries, J. (eds.) The Dynamic Sun: Challenges for Theory and Observations, SP-600, ESA, Noordwijk, 71 – 80. Google Scholar
  9. Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.: 2009, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361 – 371. doi:10.1051/0004-6361/200811416. ADSCrossRefGoogle Scholar
  10. Bemporad, A., Raymond, J., Poletto, G., Romoli, M.: 2007, A comprehensive study of the initiation and early evolution of a coronal mass ejection from ultraviolet and white-light data. Astrophys. J. 655, 576 – 590. doi:10.1086/509569. ADSCrossRefGoogle Scholar
  11. Bernasconi, P.N., Rust, D.M., Hakim, D.: 2005, Advanced automated solar filament detection and characterization code: description, performance, and results. Solar Phys. 228, 97 – 117. doi:10.1007/s11207-005-2766-y. ADSCrossRefGoogle Scholar
  12. Bernasconi, P.N., Raouafi, N.E., Georgoulis, M.K.: 2011, The sigmoid sniffer. Solar Phys., submitted. Google Scholar
  13. Bewsher, D., Harrison, R.A., Brown, D.S.: 2008, The relationship between EUV dimming and coronal mass ejections. I. Statistical study and probability model. Astron. Astrophys. 478, 897 – 906. doi:10.1051/0004-6361:20078615. ADSCrossRefGoogle Scholar
  14. Boursier, Y., Lamy, P., Llebaria, A.: 2009, Three-dimensional kinematics of coronal mass ejections from STEREO/SECCHI-COR2 observations in 2007 – 2008. Solar Phys. 256, 131 – 147. doi:10.1007/s11207-009-9358-1. ADSCrossRefGoogle Scholar
  15. Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., Robelus, S.: 2009, The ARTEMIS catalog of LASCO coronal mass ejections. Automatic recognition of transient events and Marseille inventory from synoptic maps. Solar Phys. 257, 125 – 147. doi:10.1007/s11207-009-9370-5. ADSCrossRefGoogle Scholar
  16. Byrne, J.P., Gallagher, P.T., McAteer, R.T.J., Young, C.A.: 2009, The kinematics of coronal mass ejections using multiscale methods. Astron. Astrophys. 495, 325 – 334. doi:10.1051/0004-6361:200809811. ADSCrossRefGoogle Scholar
  17. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi:10.1029/1999GL900105. ADSCrossRefGoogle Scholar
  18. Canfield, R.C., Kazachenko, M.D., Acton, L.W., Mackay, D.H., Son, J., Freeman, T.L.: 2007, Yohkoh SXT full-resolution observations of sigmoids: structure, formation, and eruption. Astrophys. J. Lett. 671, 81 – 84. doi:10.1086/524729. ADSCrossRefGoogle Scholar
  19. Chae, J., Martin, S.F., Yun, H.S., Kim, J., Lee, S., Goode, P.R., Spirock, T., Wang, H.: 2001, Small magnetic bipoles emerging in a filament channel. Astrophys. J. 548, 497 – 507. doi:10.1086/318661. ADSCrossRefGoogle Scholar
  20. Christe, S., Hannah, I.G., Krucker, S., McTiernan, J., Lin, R.P.: 2008, RHESSI microflare statistics. I. Flare-finding and frequency distributions. Astrophys. J. 677, 1385 – 1394. doi:10.1086/529011. ADSCrossRefGoogle Scholar
  21. Davey, A.R., McIntosh, S.: 2007, The SoHO/EIT brightpoint database: mining the database for science. Bull. Am. Astron. Soc. 38, 327. ADSGoogle Scholar
  22. De Moortel, I., Hood, A.W.: 2000, Wavelet analysis and the determination of coronal plasma properties. Astron. Astrophys. 363, 269 – 278. ADSGoogle Scholar
  23. De Moortel, I., McAteer, R.T.J.: 2004, Waves and wavelets: an automated detection technique for solar oscillations. Solar Phys. 223, 1 – 11. doi:10.1007/s11207-004-0806-7. ADSCrossRefGoogle Scholar
  24. De Moortel, I., Hood, A.W., Ireland, J.: 2002, Coronal seismology through wavelet analysis. Astron. Astrophys. 381, 311 – 323. doi:10.1051/0004-6361:20011659. ADSCrossRefGoogle Scholar
  25. De Moortel, I., Munday, S.A., Hood, A.W.: 2004, Wavelet analysis: the effect of varying basic wavelet parameters. Solar Phys. 222, 203 – 228. doi:10.1023/B:SOLA.0000043578.01201.2d. ADSCrossRefGoogle Scholar
  26. DeForest, C.E., Plunkett, S.P., Andrews, M.D.: 2001, Observation of polar plumes at high solar altitudes. Astrophys. J. 546, 569 – 575. doi:10.1086/318221. ADSCrossRefGoogle Scholar
  27. DeForest, C.E., Hagenaar, H.J., Lamb, D.A., Parnell, C.E., Welsch, B.T.: 2007, Solar magnetic tracking. I. Software comparison and recommended practices. Astrophys. J. 666, 576 – 587. doi:10.1086/518994. ADSCrossRefGoogle Scholar
  28. DeForest, C.E., Lamb, D.A., Berger, T., Hagenaar, H., Parnell, C., Welsch, B.: 2008, The small-scale field measured with Hinode/SOT and feature tracking: where is the mixed-polarity flux? AGU Spring Meeting Abstracts, 1. Google Scholar
  29. DeRosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., Amari, T., Canou, A., McTiernan, J.M., Régnier, S., Thalmann, J.K., Valori, G., Wheatland, M.S., Wiegelmann, T., Cheung, M.C.M., Conlon, P.A., Fuhrmann, M., Inhester, B., Tadesse, T.: 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953. Astrophys. J. 696, 1780 – 1791. doi:10.1088/0004-637X/696/2/1780. ADSCrossRefGoogle Scholar
  30. Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016 – 1025. doi:10.1086/339161. ADSCrossRefGoogle Scholar
  31. Fan, Y., Gibson, S.E.: 2003, The emergence of a twisted magnetic flux tube into a preexisting coronal arcade. Astrophys. J. Lett. 589, 105 – 108. doi:10.1086/375834. ADSCrossRefGoogle Scholar
  32. Fan, Y., Gibson, S.E.: 2004, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123 – 1133. doi:10.1086/421238. ADSCrossRefGoogle Scholar
  33. Fisher, R.R., Munro, R.H.: 1984, Coronal transient geometry. I – The flare-associated event of 1981 March 25. Astrophys. J. 280, 428 – 439. doi:10.1086/162009. ADSCrossRefGoogle Scholar
  34. Fuller, N., Aboudarham, J., Bentley, R.D.: 2005, Filament recognition and image cleaning on Meudon Hα spectroheliograms. Solar Phys. 227, 61 – 73. doi:10.1007/s11207-005-8364-1. ADSCrossRefGoogle Scholar
  35. Gao, J., Wang, H., Zhou, M.: 2002, Development of an automatic filament disappearance detection system. Solar Phys. 205, 93 – 103. ADSCrossRefGoogle Scholar
  36. Gibson, S.E., Fan, Y., Török, T., Kliem, B.: 2006, The evolving sigmoid: evidence for magnetic flux ropes in the corona before, during, and after CMES. Space Sci. Rev. 124, 131 – 144. doi:10.1007/s11214-006-9101-2. ADSCrossRefGoogle Scholar
  37. Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 503 – 515. doi:10.1086/309030. ADSCrossRefGoogle Scholar
  38. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-ray telescope (XRT) for the Hinode mission. Solar Phys. 243, 63 – 86. doi:10.1007/s11207-007-0182-1. ADSCrossRefGoogle Scholar
  39. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295 – 313. doi:10.1007/s11038-008-9282-7. ADSCrossRefGoogle Scholar
  40. Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365 – 391. doi:10.1007/s11207-007-9061-z. ADSCrossRefGoogle Scholar
  41. Hagenaar, H., Cheung, M.: 2008, Magnetic flux emergence on different scales. In: 12th European Solar Physics Meeting 2, 2.53. http://espm.kis.uni-freiburg.de. Google Scholar
  42. Hurlburt, N., Cheung, M., Schrijver, C., Chang, L., Freeland, S., Green, S., Heck, C., Jaffey, A., Kobashi, A., Schiff, D., Serafin, J., Seguin, R., Slater, G., Somani, A., Timmons, R.: 2010, Heliophysics event knowledgebase for the solar dynamics observatory and beyond. Solar Phys. doi:10.1007/s11207-010-9624-2. Google Scholar
  43. Inhester, B., Feng, L., Wiegelmann, T.: 2008, Segmentation of loops from coronal EUV images. Solar Phys. 248, 379 – 393. doi:10.1007/s11207-007-9027-1. ADSCrossRefGoogle Scholar
  44. Ireland, J., De Moortel, I.: 2002, Application of wavelet analysis to transversal coronal loop oscillations. Astron. Astrophys. 391, 339 – 351. doi:10.1051/0004-6361:20020643. ADSCrossRefGoogle Scholar
  45. Jing, J., Yurchyshyn, V.B., Yang, G., Xu, Y., Wang, H.: 2004, On the relation between filament eruptions, flares, and coronal mass ejections. Astrophys. J. 614, 1054 – 1062. doi:10.1086/423781. ADSCrossRefGoogle Scholar
  46. Jing, J., Wiegelmann, T., Suematsu, Y., Kubo, M., Wang, H.: 2008, Changes of magnetic structure in three dimensions associated with the X3.4 flare of 2006 December 13. Astrophys. J. Lett. 676, 81 – 84. doi:10.1086/587058. ADSCrossRefGoogle Scholar
  47. Jones, H.P.: 2004, Counting magnetic bipoles on the Sun by polarity inversion. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems: 8th International Conference, KES 2004, Lecture Notes in Computer Science 3215, 433 – 439. CrossRefGoogle Scholar
  48. Kliem, B., Titov, V.S., Török, T.: 2004, Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, 23 – 26. doi:10.1051/0004-6361:20031690. ADSCrossRefGoogle Scholar
  49. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A.A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3 – 17. doi:10.1007/s11207-007-9014-6. ADSCrossRefGoogle Scholar
  50. LaBonte, B.J., Rust, D.M., Bernasconi, P.N.: 2003, An automated system for detecting sigmoids in solar X-ray images. Bull. Am. Astron. Soc. 35, 814. ADSGoogle Scholar
  51. Lamb, D.A., DeForest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2008, Solar magnetic tracking. II. The apparent unipolar origin of quiet-sun flux. Astrophys. J. 674, 520 – 529. doi:10.1086/524372. ADSCrossRefGoogle Scholar
  52. Lamb, D., Deforest, C.E., Hagenaar, H.J., Parnell, C.E., Welsch, B.T.: 2007, Feature tracking of Hinode magnetograms. AGU Fall Meeting Abstracts, 1066. Google Scholar
  53. Lamb, R.: 2008, An information retrieval system for images from the TRACE satellite. Master’s thesis, Montana State University, Bozeman, MT, USA. http://www.cs.montana.edu/techreports/2008/Lamb.pdf.
  54. Lamb, R., Angryk, R., Martens, P.: 2008, An example-based image retrieval system for the TRACE repository. In: Ejiri, M., Kasturi, R., Sanniti di Baja, G. (eds.) Proceedings of the 19th International Conference on Pattern Recognition (ICPR ’08), IEEE, New York, 1 – 4. doi:10.1109/ICPR.2008.4761078. Google Scholar
  55. Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.L.: 2001, Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs. J. Geophys. Res. 106, 25301 – 25312. doi:10.1029/2000JA000260. ADSCrossRefGoogle Scholar
  56. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (invited review). Solar Phys. 182, 107 – 137. doi:10.1023/A:1005026814076. ADSCrossRefGoogle Scholar
  57. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, Magnetic field configurations basic to filament channels and filaments. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, Kluwer, Dordrecht, 303 – 338. Google Scholar
  58. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495 – 497. doi:10.1038/371495a0. ADSCrossRefGoogle Scholar
  59. McAteer, R.T.J., Gallagher, P.T., Bloomfield, D.S., Williams, D.R., Mathioudakis, M., Keenan, F.P.: 2004, Ultraviolet oscillations in the chromosphere of the quiet Sun. Astrophys. J. 602, 436 – 445. doi:10.1086/380835. ADSCrossRefGoogle Scholar
  60. McIntosh, P.S.: 1994, YOHKOH X-ray image interpretation with overlays of Hα neutral lines. In: Uchida, Y., Watanabe, T., Shibata, K., Hudson, H.S. (eds.) X-ray Solar Physics from Yohkoh, Universal Academy Press, Tokyo, 271 – 272. Google Scholar
  61. McIntosh, S.W., Gurman, J.B.: 2004, EIT EUV brightpoints over the SOHO mission so far. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) SOHO 15 Coronal Heating, ESA Special Publication 575, 235. Google Scholar
  62. McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys. 228, 285 – 299. doi:10.1007/s11207-005-4725-z. ADSCrossRefGoogle Scholar
  63. McIntosh, S.W., Sitongia, L., Markel, R., Judge, P.G., Davey, A.R.: 2009, Mining a massive brightpoint database for science. Bull. Am. Astron. Soc. 41, 839. Google Scholar
  64. McKenzie, D.E., Canfield, R.C.: 2008, Hinode XRT observations of a long-lasting coronal sigmoid. Astron. Astrophys. 481, 65 – 68. doi:10.1051/0004-6361:20079035. ADSCrossRefGoogle Scholar
  65. Metcalf, T.R., Derosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Solar Phys. 247, 269 – 299. doi:10.1007/s11207-007-9110-7. ADSCrossRefGoogle Scholar
  66. Michałek, G., Gopalswamy, N., Yashiro, S.: 2003, A new method for estimating widths, velocities, and source location of Halo coronal mass ejections. Astrophys. J. 584, 472 – 478. doi:10.1086/345526. ADSCrossRefGoogle Scholar
  67. Narukage, N., Sakao, T., Kano, R., Hara, H., Shimojo, M., Bando, T., Urayama, F., DeLuca, E., Golub, L., Weber, M., Grigis, P., Cirtain, J., Tsuneta, S.: 2011, Coronal-temperature-diagnostic capability of the Hinode/X-Ray Telescope based on self-consistent calibration. Solar Phys. doi:10.1007/s11207-010-9685-2. Google Scholar
  68. Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I., Uchida, Y.: 1991, The solar-A mission – an overview. Solar Phys. 136, 1 – 16. doi:10.1007/BF00151692. ADSCrossRefGoogle Scholar
  69. Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 485 – 499. doi:10.1007/s11207-007-9104-5. ADSCrossRefGoogle Scholar
  70. Pevtsov, A.A., Balasubramaniam, K.S., Rogers, J.W.: 2003, Chirality of chromospheric filaments. Astrophys. J. 595, 500 – 505. doi:10.1086/377339. ADSCrossRefGoogle Scholar
  71. Pneuman, G.W.: 1983, The formation of solar prominences by magnetic reconnection and condensation. Solar Phys. 88, 219 – 239. doi:10.1007/BF00196189. ADSCrossRefGoogle Scholar
  72. Podladchikova, O., Berghmans, D.: 2005, Automated detection of EIT waves and dimmings. Solar Phys. 228, 265 – 284. doi:10.1007/s11207-005-5373-z. ADSCrossRefGoogle Scholar
  73. Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2005, Automatic solar filament detection using image processing techniques. Solar Phys. 228, 119 – 135. doi:10.1007/s11207-005-5780-1. ADSCrossRefGoogle Scholar
  74. Rachmeler, L.A., Wills-Davey, M.J.: 2005, Observations of unusual “EIT Wave” dynamics. AGU Spring Meeting Abstracts, 9. Google Scholar
  75. Reinard, A.A., Biesecker, D.A.: 2008, Coronal mass ejection-associated coronal dimmings. Astrophys. J. 674, 576 – 585. doi:10.1086/525269. ADSCrossRefGoogle Scholar
  76. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097 – 1106. doi:10.1051/0004-6361:20041302. ADSCrossRefGoogle Scholar
  77. Rust, D.M., Hildner, E.: 1976, Expansion of an X-ray coronal arch into the outer corona. Solar Phys. 48, 381 – 387. ADSCrossRefGoogle Scholar
  78. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, 199 – 202. doi:10.1086/310118. ADSCrossRefGoogle Scholar
  79. Rust, D.M., LaBonte, B.J.: 2005, Observational evidence of the kink instability in solar filament eruptions and sigmoids. Astrophys. J. Lett. 622, 69 – 72. doi:10.1086/429379. ADSCrossRefGoogle Scholar
  80. Rust, D.M., Martin, S.F.: 1994, A correlation between sunspot whirls and filament type. In: Balasubramaniam, K.S., Simon, G.W. (eds.) Solar Active Region Evolution: Comparing Models with Observations CS-68, Astron. Soc. Pac., San Francisco, 337. Google Scholar
  81. Rust, D.M., Anderson, B.J., Andrews, M.D., Acuña, M.H., Russell, C.T., Schuck, P.W., Mulligan, T.: 2005, Comparison of interplanetary disturbances at the NEAR spacecraft with coronal mass ejections at the Sun. Astrophys. J. 621, L524 – L536. doi:10.1086/427401. ADSCrossRefGoogle Scholar
  82. Savcheva, A., Cirtain, J., Deluca, E.E., Lundquist, L.L., Golub, L., Weber, M., Shimojo, M., Shibasaki, K., Sakao, T., Narukage, N., Tsuneta, S., Kano, R.: 2007, A study of polar jet parameters based on Hinode XRT observations. Publ. Astron. Soc. Japan 59, 771 – 778. ADSGoogle Scholar
  83. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields, Part I: A quantitative comparison of methods. Solar Phys. 235, 161 – 190. doi:10.1007/s11207-006-0068-7. ADSCrossRefGoogle Scholar
  84. Shih, F.Y., Kowalski, A.J.: 2003, Automatic extraction of filaments in Hα solar images. Solar Phys. 218, 99 – 122. doi:10.1023/B:SOLA.0000013052.34180.58. ADSCrossRefGoogle Scholar
  85. Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Nonlinear force-free coronal magnetic field modeling and preprocessing of vector magnetograms in spherical geometry. Astron. Astrophys. 508, 421 – 432. ADSMATHCrossRefGoogle Scholar
  86. Thalmann, J.K., Wiegelmann, T., Raouafi, N.E.: 2008, First nonlinear force-free field extrapolations of SOLIS/VSM data. Astron. Astrophys. 488, 71 – 74. doi:10.1051/0004-6361:200810235. ADSCrossRefGoogle Scholar
  87. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 – 720. ADSGoogle Scholar
  88. Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100. doi:10.1086/462412. ADSCrossRefGoogle Scholar
  89. Török, T., Kliem, B.: 2007, Numerical simulations of fast and slow coronal mass ejections. Astron. Nachr. 328, 743 – 746. doi:10.1002/asna.200710795. ADSCrossRefGoogle Scholar
  90. Tsuneta, S., Hara, H., Shimizu, T., Acton, L.W., Strong, K.T., Hudson, H.S., Ogawara, Y.: 1992, Observation of a solar flare at the limb with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Japan 44, 63 – 69. ADSGoogle Scholar
  91. van Ballegooijen, A.A., Martens, P.C.H.: 1989, Formation and eruption of solar prominences. Astrophys. J. 343, 971 – 984. doi:10.1086/167766. ADSCrossRefGoogle Scholar
  92. van Ballegooijen, A.A., Martens, P.C.H.: 1990, Magnetic fields in quiescent prominences. Astrophys. J. 361, 283 – 289. doi:10.1086/169193. ADSCrossRefGoogle Scholar
  93. Webb, D.F.: 2000, Understanding CMEs and their source regions. J. Atmos. Solar-Terr. Phys. 62, 1415 – 1426. ADSCrossRefGoogle Scholar
  94. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150 – 1155. doi:10.1086/309355. ADSCrossRefGoogle Scholar
  95. Wiegelmann, T.: 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields. Solar Phys. 219, 87 – 108. doi:10.1023/B:SOLA.0000021799.39465.36. ADSCrossRefGoogle Scholar
  96. Wiegelmann, T.: 2007, Computing nonlinear force-free coronal magnetic fields in spherical geometry. Solar Phys. 240, 227 – 239. doi:10.1007/s11207-006-0266-3. ADSCrossRefGoogle Scholar
  97. Wiegelmann, T., Inhester, B.: 2010, How to deal with measurement errors and lacking data in nonlinear force-free coronal magnetic field modelling? Astron. Astrophys. 516, 107. doi:10.1051/0004-6361/201014391. ADSCrossRefGoogle Scholar
  98. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Solar Phys. 233, 215 – 232. doi:10.1007/s11207-006-2092-z. ADSCrossRefGoogle Scholar
  99. Wiegelmann, T., Inhester, B., Feng, L.: 2009, Solar stereoscopy – where are we and what developments do we require to progress? Ann. Geophys. 27, 2925 – 2936. ADSCrossRefGoogle Scholar
  100. Wiegelmann, T., Thalmann, J.K., Schrijver, C.J., Derosa, M.L., Metcalf, T.R.: 2008, Can we improve the preprocessing of photospheric vector magnetograms by the inclusion of chromospheric observations? Solar Phys. 247, 249 – 267. doi:10.1007/s11207-008-9130-y. ADSCrossRefGoogle Scholar
  101. Wills-Davey, M.J.: 2006, Tracking large-scale propagating coronal wave fronts (EIT waves) using automated methods. Astrophys. J. 645, 757 – 765. doi:10.1086/504144. ADSCrossRefGoogle Scholar
  102. Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: application to space weather forecasting. J. Geophys. Res. (Space Phys.) 109(A18), 3109 – 3121. doi:10.1029/2003JA010226. CrossRefGoogle Scholar
  103. Xue, X.H., Wang, C.B., Dou, X.K.: 2005, An ice-cream cone model for coronal mass ejections. J. Geophys. Res. (Space Phys.) 110(A9), 8103 – 8114. doi:10.1029/2004JA010698. CrossRefGoogle Scholar
  104. Yang, L., Jin, R., Sukthankar, R., Zheng, B., Mummert, L., Satyanarayanan, M., Chen, M., Jukic, D.: 2007, Learning distance metrics for interactive search-assisted diagnosis of mammograms. In: SPIE CS-6514. doi:10.1117/12.710076. Google Scholar
  105. Yurchyshyn, V.B., Wang, H., Goode, P.R., Deng, Y.: 2001, Orientation of the magnetic fields in interplanetary flux ropes and solar filaments. Astrophys. J. 563, 381 – 388. doi:10.1086/323778. ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • P. C. H. Martens
    • 1
    • 2
  • G. D. R. Attrill
    • 1
  • A. R. Davey
    • 1
  • A. Engell
    • 1
  • S. Farid
    • 1
  • P. C. Grigis
    • 1
  • J. Kasper
    • 1
  • K. Korreck
    • 1
  • S. H. Saar
    • 1
  • A. Savcheva
    • 1
    • 12
  • Y. Su
    • 1
  • P. Testa
    • 1
  • M. Wills-Davey
    • 1
  • P. N. Bernasconi
    • 3
  • N.-E. Raouafi
    • 3
  • V. A. Delouille
    • 4
  • J. F. Hochedez
    • 4
  • J. W. Cirtain
    • 5
  • C. E. DeForest
    • 6
  • R. A. Angryk
    • 7
  • I. De Moortel
    • 8
  • T. Wiegelmann
    • 9
  • M. K. Georgoulis
    • 10
  • R. T. J. McAteer
    • 11
    • 14
  • R. P. Timmons
    • 13
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Department of PhysicsMontana State UniversityBozemanUSA
  3. 3.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  4. 4.SIDC-Royal Observatory of BelgiumBrusselsBelgium
  5. 5.Marshall Space Flight Center-NASAMarshall Space Flight CenterUSA
  6. 6.Southwest Research InstituteBoulderUSA
  7. 7.Department of Computer ScienceMontana State UniversityBozemanUSA
  8. 8.School of Mathematics & StatisticsUniversity of St Andrews, North HaughSt AndrewsUK
  9. 9.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  10. 10.Research Center for Astronomy and Applied MathematicsAcademy of AthensAthensGreece
  11. 11.School of PhysicsTrinity College DublinDublin 2Ireland
  12. 12.Astronomy DepartmentBoston UniversityBostonUSA
  13. 13.Lockheed Martin Advanced Technology CenterPalo AltoUSA
  14. 14.Department of AstronomyNew Mexico State UniversityLas CrucesUSA

Personalised recommendations