Skip to main content

Abstract

Recent experimental approaches to high-throughput screening, combined with effective computational techniques have resulted in large, high-quality databases of biochemical interactions. These databases hold the potential for fundamentally enhancing our understanding of cellular processes and for controlling them. Recent work on analyses of these databases has focused on computational approaches for aligning networks, identifying modules, extracting discriminating and descriptive components, and inferring networks. In this chapter, we focus on the problem of aligning a given set of networks with a view to identifying conserved subnetworks, finding orthologies, and elucidating higher level organization and evolution of interactions. Network alignment, in general, poses significant computational challenges, since it is related to the subgraph isomorphism problem (which is known to be computationally expensive). For this reason, effective computational techniques focus on exploiting structure of networks (and their constituent elements), alternate formulations in terms of underlying optimization, and on the use of additional data for simplifying the alignment process. We present a comprehensive survey of these approaches, along with important algorithms for various formulations of the network alignment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ideker, R.S.T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24 (2006) 427–433

    Article  PubMed  Google Scholar 

  2. Flannick, J., Novak, A., Srinivasan, B., McAdams, H., Batzoglou, S.: Graemlin: general and robust alignment of multiple large interaction networks. Genome Research 16(9) (2006) 1169–1181

    Article  PubMed  CAS  Google Scholar 

  3. Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., Pržulj, N.: Topological network alignment uncovers biological function and phylogeny. Journal of The Royal Society Interface (2010)

    Google Scholar 

  4. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Research 32(Web-Server-Issue) (2004) 83–88

    Google Scholar 

  5. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS 100(20) (2003)

    Google Scholar 

  6. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. Journal of Computational Biology 12(6) (2005) 835–846

    Article  PubMed  CAS  Google Scholar 

  7. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences of the United States of America 102(6) (2005) 1974–1979

    Article  PubMed  CAS  Google Scholar 

  8. Bader, J.S., Chaudhuri, A., Rothberg, J.M., Chant, J.: Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology 22(1) (2003) 78–85

    Article  PubMed  Google Scholar 

  9. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: RECOMB. (2005) 48–65

    Google Scholar 

  10. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. Journal of Computational Biology 13(2) (2006) 182–199

    Article  PubMed  Google Scholar 

  11. Pastor-Satorras, R., Smith, E., Solé, R.V.: Evolving protein interaction networks through gene duplication. J Theo. Bio. 222 (2003) 199–210

    Article  CAS  Google Scholar 

  12. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction netwokrs. ComPlexUs 1 (2003) 38–44

    Google Scholar 

  13. Wagner, A.: How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. Biol. Sci. 270(1514) (2003) 457–466

    Article  CAS  Google Scholar 

  14. Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Detecting conserved interaction patterns in biological networks. Journal of Computational Biology 13(7) (2006) 1299–1322

    Article  PubMed  Google Scholar 

  15. Tatusov, R., Fedorova, N., Jackson, J., Jacobs, A., Kiryutin, B., Koonin, E., Krylov, D., Mazumder, R., Mekhedov, S., Nikolskaya, A., Rao, B.S., Smirnov, S., Sverdlov, A., Vasudevan, S., Wolf, Y., Yin, J., Natale, D.: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4(1) (2003)  41

    Google Scholar 

  16. Srinivasan, B.S., Novak, A.F., Flannick, J., Batzoglou, S., McAdams, H.H.: Integrated protein interaction networks for 11 microbes. In: RECOMB. (2006) 1–14

    Google Scholar 

  17. Chor, B., Tuller, T.: Biological Networks: Comparison, Conservation, and Evolution via Relative Description Length. Journal of Computational Biology 14(6) (2007) 817–838

    Article  PubMed  CAS  Google Scholar 

  18. Pinter, R.Y., Rokhlenko, O., Yeger-Lotem, E., Ziv-Ukelson, M.: Alignment of metabolic pathways. Bioinformatics 21(16) (August 2005) 3401–3408

    Article  PubMed  CAS  Google Scholar 

  19. Narayanan, M., Karp, R.M.: Comparing protein interaction networks via a graph match-and-split algorithm. Journal of computational biology: a journal of computational molecular cell biology 14(7) (September 2007) 892–907

    CAS  Google Scholar 

  20. Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. Journal of computational biology : a journal of computational molecular cell biology 17(3) (March 2010) 237–252

    CAS  Google Scholar 

  21. Banks, E., Nabieva, E., Peterson, R., Singh, M.: NetGrep: fast network schema searches in interactomes. Genome Biology 9(9) (2008)

    Google Scholar 

  22. Bandyopadhyay, S., Sharan, R., Ideker, T.: Systematic identification of functional orthologs based on protein network comparison. Genome Research 16 (2006) 428–435

    Article  PubMed  CAS  Google Scholar 

  23. SinghF, R., Xu, J., Berger, B.: Pairwise global alignment of protein interaction networks by matching neighborhood topology. In: RECOMB. (2007) 16–31

    Google Scholar 

  24. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistic Quarterly 2 (1955) 83–97

    Article  Google Scholar 

  25. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks. In: Pacific Symposium on Biocomputing. (2008) 303–314

    Google Scholar 

  26. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12) (2009) i253–i258

    Article  PubMed  CAS  Google Scholar 

  27. Flannick, J., Novak, A.F., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Automatic parameter learning for multiple network alignment. In: RECOMB. (2008) 214–231

    Google Scholar 

  28. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., Hattori, M.: The KEGG resource for deciphering the genome. Nucleic acids research 32(Database issue) (2004) D277–280

    Google Scholar 

  29. Zhenping, L., Zhang, S., Wang, Y., Zhang, X.S., Chen, L.: Alignment of molecular networks by integer quadratic programming. Bioinformatics 23(13) (2007) 1631–1639

    Article  PubMed  Google Scholar 

  30. Bayati, M., Gerritsen, M., Gleich, D., Saberi, A., Wang, Y.: Algorithms for large, sparse network alignment problems. In: ICDM. (2009) 705–710

    Google Scholar 

  31. Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC Bioinformatics 10(S-1) (2009)

    Google Scholar 

  32. Zaslavskiy, M., Bach, F.R., Vert, J.P.: Global alignment of protein-protein interaction networks by graph matching methods. Bioinformatics 25(12) (2009) i259–1267

    Article  PubMed  CAS  Google Scholar 

  33. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12) (2009) 2227–2242

    Article  PubMed  Google Scholar 

  34. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quarterly 3 (1956) 95–110

    Article  Google Scholar 

  35. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: RECOMB. (2008) 246–256

    Google Scholar 

  36. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature genetics 25(1) (2000) 25–29

    CAS  Google Scholar 

  37. Tipton, K.F., Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Enzyme nomenclature. Recommendations 1992. Supplement: corrections and additions. European journal of biochemistry/FEBS, 223(1) (1994) 1–5

    Google Scholar 

  38. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Güldener, U., Mannhaupt, G., Münsterkötter, M., Mewes, H.W.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32(18) (2004) 5539–5545

    Article  PubMed  CAS  Google Scholar 

  39. Hawkins, T., Kihara, D.: Function prediction of uncharacterized proteins. J. Bioinformatics and Computational Biology 5(1) (2007) 1–30

    Article  CAS  Google Scholar 

  40. Kandasamy, K., Mohan, S.S., Raju, R., Keerthikumar, S., Kumar, G.S.S., Venugopal, A.K., Telikicherla, D., Navarro, J.D., Mathivanan, S., Pecquet, C., Gollapudi, S.K.K., Tattikota, S.G.G., Mohan, S., Padhukasahasram, H., Subbannayya, Y., Goel, R., Jacob, H.K.K., Zhong, J., Sekhar, R., Nanjappa, V., Balakrishnan, L., Subbaiah, R., Ramachandra, Y., Rahiman, B.A., Prasad, T.K.K., Lin, J.X.X., Houtman, J.C.C., Desiderio, S., Renauld, J.C.C., Constantinescu, S.N., Ohara, O., Hirano, T., Kubo, M., Singh, S., Khatri, P., Draghici, S., Bader, G.D., Sander, C., Leonard, W.J., Pandey, A.: NetPath: a public resource of curated signal transduction pathways. Genome biology 11(1) (2010)

    Google Scholar 

  41. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., Mckusick, V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids research 33(Database issue) (2005)

    Google Scholar 

  42. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.: GO: TermFinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 20(18) 3710+

    Google Scholar 

  43. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue, C.W.V.: BIND–The Biomolecular Interaction Network Database. Nucl. Acids Res. 29(1) (2001) 242–245

    Article  PubMed  CAS  Google Scholar 

  44. Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D.: DIP: The Database of Interacting Proteins. Nucleic acids research 28(1) (2000) 289–291

    Article  PubMed  CAS  Google Scholar 

  45. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S.E., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit, H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D.J., Apweiler, R.: IntAct: an open source molecular interaction database. Nucleic Acids Research 32(Database-Issue) (2004) 452–455

    Google Scholar 

  46. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucl. Acids Res. 34 (2006) D535–539

    Article  PubMed  CAS  Google Scholar 

  47. Chatr-aryamontri, A., Ceol, A., Palazzi, L.M.M., Nardelli, G., Schneider, M.V.V., Castagnoli, L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucleic acids research 35(Database issue) (2007) D572–574

    Google Scholar 

  48. Güldener, U., Münsterkötter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes, H.W., Stümpflen, V.: MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research 34(Database-Issue) (2006) 436–441

    Google Scholar 

  49. Karp, P.D., O.C.M.K.C.G.L.K.: Expansion of the biocyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33 (2005) 6083–9

    Google Scholar 

  50. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucleic acids research 33(Database issue) (2005) D428–432

    Google Scholar 

  51. Schaefer, C.F.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the pathway interaction database. Nucleic Acids Research 37(Database issue) (2009) 674–679

    Google Scholar 

  52. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.L.: The Universal Protein Resource (UniProt). Nucleic Acids Research 33(Database-Issue) (2005) 154–159

    Google Scholar 

  53. Tateno, Y., Imanishi, T., Miyazaki, S., Fukami-Kobayashi, K., Saitou, N., Sugawara, H., Gojobori, T.: DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Research 30(1) (2002) 27–30

    Article  PubMed  CAS  Google Scholar 

  54. Stoesser, G., Tuli, M.A., Lopez, R., Sterk, P.: The EMBL Nucleotide Sequence Database. Nucl. Acids Res. 27(1) (1999) 18–24

    Article  PubMed  CAS  Google Scholar 

  55. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W.: GenBank. Nucleic Acids Research 37(Database-Issue) (2009) 26–31

    Google Scholar 

  56. Gelbart, W.M., Crosby, M.A., Matthews, B., Rindone, W.P., Chillemi, J., Twombly, S.R., Emmert, D., Ashburner, M., Drysdale, R.A., Whitfield, E., Millburn, G.H., de Grey, A., Kaufman, T., Matthews, K., Gilbert, D., Strelets, V.B., Tolstoshev, C.: FlyBase: a Drosophila database. The FlyBase consortium. Nucleic Acids Research 25(1) (1997) 63–66

    Article  CAS  Google Scholar 

  57. Rhee, S.Y., Beavis, W.D., Berardini, T.Z., Chen, G., Dixon, D.A., Doyle, A., Garcia-Hernandez, M., Huala, E., Lander, G., Montoya, M., Miller, N., Mueller, L.A., Mundodi, S., Reiser, L., Tacklind, J., Weems, D.C., Wu, Y., Xu, I., Yoo, D., Yoon, J., Zhang, P.: The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Research 31(1) (2003) 224–228

    Article  PubMed  CAS  Google Scholar 

  58. Bult, C.J., Blake, J.A., Richardson, J.E., Kadin, J.A., Eppig, J.T.: The Mouse Genome Database (MGD): integrating biology with the genome. Nucleic Acids Research 32(Database-Issue) (2004) 476–481

    Google Scholar 

  59. Twigger, S.N., Lu, J., Shimoyama, M., Chen, D., Pasko, D., Long, H., Ginster, J., Chen, C.F., Nigam, R., Kwitek, A.E., Eppig, J.T., Maltais, L., Maglott, D.R., Schuler, G.D., Jacob, H.J., Tonellato, P.J.: Rat Genome Database (RGD): mapping disease onto the genome. Nucleic Acids Research 30(1) (2002) 125–128

    Article  PubMed  CAS  Google Scholar 

  60. Hong, E.L., Balakrishnan, R., Dong, Q., Christie, K.R., Park, J., Binkley, G., Costanzo, M.C., Dwight, S.S., Engel, S.R., Fisk, D.G., Hirschman, J.E., Hitz, B.C., Krieger, C.J., Livstone, M.S., Miyasato, S.R., Nash, R.S., Oughtred, R., Skrzypek, M.S., Weng, S., Wong, E.D., Zhu, K.K., Dolinski, K., Botstein, D., Cherry, J.M.: Gene Ontology annotations at SGD: new data sources and annotation methods. Nucleic Acids Research 36(Database-Issue) (2008) 577–581

    Google Scholar 

  61. Dolinski, K., Botstein, D.: Orthology and functional conservation in eukaryotes. Annual Review of Genetics 41(1) (2007) 465–507

    Article  PubMed  CAS  Google Scholar 

  62. O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive database of eukaryotic orthologs. Nucl. Acids Res. 33 (2005) D476–480

    Article  PubMed  Google Scholar 

  63. Pereira-Leal, J.B., Levy, E.D., Teichmann, S.A.: The origins and evolution of functional modules: lessons from protein complexes. Phil. Trans. R. Soc. 361(1467) (2006) 507–517

    Article  CAS  Google Scholar 

  64. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402 (1999) C47–C51

    Article  PubMed  CAS  Google Scholar 

  65. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21) 12123–8+

    Google Scholar 

  66. Pereira-Leal, J., Enright, A., Ouzounis, C.: Detection of functional modules from protein interaction networks. Proteins 54 (2004) 49–57

    Article  PubMed  CAS  Google Scholar 

  67. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586) (2002) 1551–1555

    Article  PubMed  CAS  Google Scholar 

  68. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing modular organization in the yeast transcriptional network. Nat Genet 31(4) (2002) 370–377

    PubMed  CAS  Google Scholar 

  69. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2) (2003) 166–176

    Google Scholar 

  70. Erten, S., Li, X., Bebek, G., Li, J., Koyutürk, M.: Phylogenetic analysis of modularity in protein interaction networks. BMC Bioinformatics 10(1) (2009)

    Google Scholar 

  71. Robertson, D.L., Lovell, S.C.: Evolution in protein interaction networks: co-evolution, rewiring and the role of duplication. Biochemical Society transactions 37 (2009) 768–771

    Article  PubMed  CAS  Google Scholar 

  72. Huan, J., Bandyopadhyay, D., Wang, W., Snoeyink, J., Prins, J., Tropsha, A.: Comparing graph representations of protein structure for mining family-specific residue-based packing motifs. Journal of Computational Biology 12 (2005) 657–671

    Article  PubMed  CAS  Google Scholar 

  73. Promislow, D.E.: Protein networks, pleiotropy and the evolution of senescence. In: Proc Biol Sci. Volume 271. (2004) 1225–1234

    Google Scholar 

  74. Wagner, G.P., Pavlicev, M., Cheverud, J.M.: The road to modularity. Nat Rev Genet 8(12) (2007) 921–31

    Article  PubMed  CAS  Google Scholar 

  75. Yosef, N., Kupiec, M., Ruppin, E., Sharan, R.: A complex-centric view of protein network evolution. Nucl. Acids Res. 37(12) (2009)

    Google Scholar 

  76. Towfic, F., Greenlee, M.H.W., Honavar, V.: Aligning biomolecular networks using modular graph kernels. In: WABI. Volume 5724 of Lecture Notes in Computer Science, Springer (2009) 345–361

    Google Scholar 

  77. Joseph, L., Isaac, K., Albert-Laszlo, B.: Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Molecular Systems Biology 3(124) (2007)

    Google Scholar 

  78. Chavali, S., Barrenas, F., Kanduri, K., Benson, M.: Network properties of human disease genes with pleiotropic effects. BMC Systems Biology 4(1) (2010)

    Google Scholar 

  79. Lin, Z.: Bioinformatics Basics: Applications in Biological Science and Medicine. Edited by Lukas K. Buehler and Hooman H. Rashidi. Brief Bioinform 9(3) (2008) 256–257

    Google Scholar 

  80. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes and Development 21(9) (2007) 1010–1024

    Article  PubMed  CAS  Google Scholar 

  81. Lei, G., Ji, Q.: Whole genome molecular phylogeny of large dsdna viruses using composition vector method. BMC Evol Bio 7(41) (2007)

    Google Scholar 

  82. Palmenberg, A.C., Spiro, D., Kuzmickas, R., Wang, S., Djikeng, A., Rathe, J.A., Fraser-Liggett, C.M., Liggett, S.B.: Sequencing and analyses of all known human rhinovirus genomes reveals structure and evolution. Science (2009)

    Google Scholar 

  83. Riester, M., Stephan-Otto Attolini, C., Downey, R.J., Singer, S., Michor, F.: A differentiation-based phylogeny of cancer subtypes. PLoS Comput Biol 6(5) (2010)

    Google Scholar 

  84. Suthram S, Sittler T, I.T.: The Plasmodium protein network diverges from those of other eukaryotes. Nature (2005)

    Google Scholar 

  85. Tan, C.S.H.S., Bodenmiller, B., Pasculescu, A., Jovanovic, M., Hengartner, M.O., Jørgensen, C., Bader, G.D., Aebersold, R., Pawson, T., Linding, R.: Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Science signaling 2(81) (2009)

    Google Scholar 

  86. Wu, X., Liu, Q., Jiang, R.: Align human interactome with phenome to identify causative genes and networks underlying disease families. Bioinformatics 25(1) (2009)

    Google Scholar 

  87. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. PNAS 104(21) (2007) 8685–8690

    Article  PubMed  CAS  Google Scholar 

  88. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science (New York, N.Y.) 298(5594) (2002) 824–827

    Google Scholar 

  89. Pržulj, N.: Biological network comparison using graphlet degree distribution. Bioinformatics 26 (March 2010) 853–854

    Article  Google Scholar 

  90. Zager, L.: Graph similarity and matching. Master’s thesis, MIT (2005)

    Google Scholar 

Download references

Acknowledgements

The authors thank Ron Pinter (Technion) and Mehmet Koyutürk (Case Western Reserve) for many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth Grama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mohammadi, S., Grama, A. (2012). Biological Network Alignment. In: Koyutürk, M., Subramaniam, S., Grama, A. (eds) Functional Coherence of Molecular Networks in Bioinformatics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0320-3_5

Download citation

Publish with us

Policies and ethics