Skip to main content

Normal Cardiovascular Adaptation to Pregnancy

  • Chapter
  • First Online:
Evidence-Based Cardiology Consult

Abstract

Normal pregnancy is characterized by profound hemodynamic changes. These begin early in pregnancy and include a fall in vascular resistance which induces an increase in blood volume and stroke volume. Heart rate and cardiac output also rise. Arterial blood pressure is reduced. The adaptation is most prominent in the first half of pregnancy. To cope with these hemodynamic challenges, the left ventricle hypertrophies, thereby preserving systolic and diastolic function. Peripheral arterial resistance is decreased and compliance and distensibility are increased. Venous capacitance is greatly enhanced.

Uteroplacental blood flow augments with gestation to meet the increased needs of a growing fetus. Maternal cerebral blood flow is reduced. The influence of these major macrovascular changes on microvascular perfusion remains to be elucidated. During labor and delivery, cardiac output further rises. Postpartum, most hemodynamic parameters are rapidly reversed within weeks. Structural changes normalize within several months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bamfo JE, Kametas NA, Chambers JB, Nicolaides KH. Maternal cardiac function in normotensive and pre-eclamptic intrauterine growth restriction. Ultrasound Obstet Gynecol. 2008;32:682–6.

    PubMed  CAS  Google Scholar 

  2. Bosio PM, McKenna PJ, Conroy R, O’Herlihy C. Maternal central hemodynamics in hypertensive disorders of pregnancy. Obstet Gynecol. 1999;94:978–84.

    PubMed  CAS  Google Scholar 

  3. De Paco C, Kametas N, Rencoret G, Strobl I, Nicolaides KH. Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age. Obstet Gynecol. 2008;111:292–300.

    PubMed  Google Scholar 

  4. Duvekot JJ, Cheriex EC, Pieters FA, Menheere PP, Schouten HJ, Peeters LL. Maternal volume homeostasis in early pregnancy in relation to fetal growth restriction. Obstet Gynecol. 1995;85:361–7.

    PubMed  CAS  Google Scholar 

  5. Melchiorre K, Thilaganathan B. Maternal cardiac function in preeclampsia. Curr Opin Obstet Gynecol. 2011;23:440–7.

    PubMed  Google Scholar 

  6. Vasapollo B, Valensise H, Novelli GP, Altomare F, Galante A, Arduini D. Abnormal maternal cardiac function precedes the clinical manifestation of fetal growth restriction. Ultrasound Obstet Gynecol. 2004;24:23–9.

    PubMed  CAS  Google Scholar 

  7. Abbas AE, Lester SJ, Connolly H. Pregnancy and the cardiovascular system. Int J Cardiol. 2005;98:179–89.

    PubMed  Google Scholar 

  8. Roos-Hesselink JW, Duvekot JJ, Thorne SA. Pregnancy in high risk cardiac conditions. Heart. 2009;95:680–6.

    PubMed  Google Scholar 

  9. Siu SC, Colman JM, Sorensen S, Smallhorn JF, Farine D, Amankwah KS, et al. Adverse neonatal and cardiac outcomes are more common in pregnant women with cardiac disease. Circulation. 2002;105:2179–84.

    PubMed  Google Scholar 

  10. Bolte AC, Dekker GA, van Eyck J, van Schijndel RS, van Geijn HP. Lack of agreement between central venous pressure and pulmonary capillary wedge pressure in preeclampsia. Hypertens Pregnancy. 2000;19:261–71.

    PubMed  CAS  Google Scholar 

  11. Clark SL, Greenspoon JS, Aldahl D, Phelan JP. Severe preeclampsia with persistent oliguria: management of hemodynamic subsets. Am J Obstet Gynecol. 1986;154:490–4.

    PubMed  CAS  Google Scholar 

  12. Cotton DB, Gonik B, Dorman K, Harrist R. Cardiovascular alterations in severe pregnancy-induced hypertension: relationship of central venous pressure to pulmonary capillary wedge pressure. Am J Obstet Gynecol. 1985;151:762–4.

    PubMed  CAS  Google Scholar 

  13. Visser W, Wallenburg HC. Maternal and perinatal outcome of temporizing management in 254 consecutive patients with severe pre-eclampsia remote from term. Eur J Obstet Gynecol Reprod Biol. 1995;63:147–54.

    PubMed  CAS  Google Scholar 

  14. Carlin A, Alfirevic Z. Physiological changes of pregnancy and monitoring. Best Pract Res Clin Obstet Gynaecol. 2008;22:801–23.

    PubMed  Google Scholar 

  15. Cornette J, Duvekot J, Roos-Hesselink J, Hop W, Steegers E. Maternal and fetal haemodynamic effects of nifedipine in normotensive pregnant women. BJOG. 2010. doi:10.1111/j.1471-0528.2010.02794.x.

    PubMed  Google Scholar 

  16. Lee AJ, Cohn JH, Ranasinghe JS. Cardiac output assessed by invasive and minimally invasive techniques. Anesthesiol Res Pract. 2011;2011:475151.

    PubMed  Google Scholar 

  17. Mohammed I, Phillips C. Techniques for determining cardiac output in the intensive care unit. Crit Care Clin. 2010;26:355–64, table of contents.

    PubMed  Google Scholar 

  18. Invasive hemodynamic monitoring in obstetrics and gynecology. ACOG technical bulletin number 175 – December 1992. Int J Gynaecol Obstet. 1993;42:199–205.

    Google Scholar 

  19. Wallenburg HC. Invasive hemodynamic monitoring in pregnancy. Eur J Obstet Gynecol Reprod Biol. 1991;42(Suppl):S45–51.

    PubMed  Google Scholar 

  20. Clark SL, Cotton DB. Clinical indications for pulmonary artery catheterization in the patient with severe preeclampsia. Am J Obstet Gynecol. 1988;158:453–8.

    PubMed  CAS  Google Scholar 

  21. Clark SL, Cotton DB, Lee W, Bishop C, Hill T, Southwick J, et al. Central hemodynamic assessment of normal term pregnancy. Am J Obstet Gynecol. 1989;161:1439–42.

    PubMed  CAS  Google Scholar 

  22. Clark SL, Horenstein JM, Phelan JP, Montag TW, Paul RH. Experience with the pulmonary artery catheter in obstetrics and gynecology. Am J Obstet Gynecol. 1985;152:374–8.

    PubMed  CAS  Google Scholar 

  23. Cotton DB, Lee W, Huhta JC, Dorman KF. Hemodynamic profile of severe pregnancy-induced hypertension. Am J Obstet Gynecol. 1988;158:523–9.

    PubMed  CAS  Google Scholar 

  24. Gilbert WM, Towner DR, Field NT, Anthony J. The safety and utility of pulmonary artery catheterization in severe preeclampsia and eclampsia. Am J Obstet Gynecol. 2000;182:1397–403.

    PubMed  CAS  Google Scholar 

  25. Mabie WC, DiSessa TG, Crocker LG, Sibai BM, Arheart KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170:849–56.

    PubMed  CAS  Google Scholar 

  26. Mabie WC, Ratts TE, Sibai BM. The central hemodynamics of severe preeclampsia. Am J Obstet Gynecol. 1989;161:1443–8.

    PubMed  CAS  Google Scholar 

  27. Shure D. Pulmonary-artery catheters – peace at last? N Engl J Med. 2006;354:2273–4.

    PubMed  CAS  Google Scholar 

  28. Vernon C, Phillips CR. Pulmonary artery catheters in acute heart failure: end of an era? Crit Care. 2009;13:1003.

    PubMed  Google Scholar 

  29. Armstrong S, Fernando R, Columb M. Minimally- and non-invasive assessment of maternal cardiac output: go with the flow! Int J Obstet Anesth. 2011;20:330–40.

    PubMed  CAS  Google Scholar 

  30. Bliacheriene F, Carmona MJ, Barretti Cde F, Haddad CM, Mouchalwat ES, Bortolotto MR, et al. Use of a minimally invasive uncalibrated cardiac output monitor in patients undergoing cesarean section under spinal anesthesia: report of four cases. Rev Bras Anestesiol. 2011;61:610–8, 334–8.

    PubMed  Google Scholar 

  31. Heethaar RM, van Oppen AC, Ottenhoff FA, Brouwer FA, Bruinse HW. Thoracic electrical bioimpedance: suitable for monitoring stroke volume during pregnancy? Eur J Obstet Gynecol Reprod Biol. 1995;58:183–90.

    PubMed  CAS  Google Scholar 

  32. Masaki DI, Greenspoon JS, Ouzounian JG. Measurement of cardiac output in pregnancy by thoracic electrical bioimpedance and thermodilution. A preliminary report. Am J Obstet Gynecol. 1989;161:680–4.

    PubMed  CAS  Google Scholar 

  33. San-Frutos L, Engels V, Zapardiel I, Perez-Medina T, Almagro-Martinez J, Fernandez R, et al. Hemodynamic changes during pregnancy and postpartum: a prospective study using thoracic electrical bioimpedance. J Matern Fetal Neonatal Med. 2011;24:1333–40.

    PubMed  Google Scholar 

  34. Scardo JA, Ellings J, Vermillion ST, Chauhan SP. Validation of bioimpedance estimates of cardiac output in preeclampsia. Am J Obstet Gynecol. 2000;183:911–3.

    PubMed  CAS  Google Scholar 

  35. van Oppen AC, van der Tweel I, Alsbach GP, Heethaar RM, Bruinse HW. A longitudinal study of maternal hemodynamics during normal pregnancy. Obstet Gynecol. 1996;88:40–6.

    PubMed  Google Scholar 

  36. Easterling TR, Benedetti TJ, Carlson KL, Watts DH. Measurement of cardiac output in pregnancy by thermodilution and impedance techniques. Br J Obstet Gynaecol. 1989;96:67–9.

    PubMed  CAS  Google Scholar 

  37. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293:H583–9.

    PubMed  CAS  Google Scholar 

  38. Penny JA, Anthony J, Shennan AH, De Swiet M, Singer M. A comparison of hemodynamic data derived by pulmonary artery flotation catheter and the esophageal Doppler monitor in preeclampsia. Am J Obstet Gynecol. 2000;183:658–61.

    PubMed  CAS  Google Scholar 

  39. Duvekot JJ, Peeters LL. Maternal cardiovascular hemodynamic adaptation to pregnancy. Obstet Gynecol Surv. 1994;49:S1–14.

    PubMed  CAS  Google Scholar 

  40. Belfort MA, Mares A, Saade G, Wen T, Rokey R. Two-dimensional echocardiography and Doppler ultrasound in managing obstetric patients. Obstet Gynecol. 1997;90:326–30.

    PubMed  CAS  Google Scholar 

  41. Easterling TR, Carlson KL, Schmucker BC, Brateng DA, Benedetti TJ. Measurement of cardiac output in pregnancy by Doppler technique. Am J Perinatol. 1990;7:220–2.

    PubMed  CAS  Google Scholar 

  42. Easterling TR, Watts DH, Schmucker BC, Benedetti TJ. Measurement of cardiac output during pregnancy: validation of Doppler technique and clinical observations in preeclampsia. Obstet Gynecol. 1987;69:845–50.

    PubMed  CAS  Google Scholar 

  43. Lee W, Rokey R, Cotton DB. Noninvasive maternal stroke volume and cardiac output determinations by pulsed Doppler echocardiography. Am J Obstet Gynecol. 1988;158:505–10.

    PubMed  CAS  Google Scholar 

  44. Robson SC, Boys RJ, Hunter S. Doppler echocardiographic estimation of cardiac output: analysis of temporal variability. Eur Heart J. 1988;9:313–8.

    PubMed  CAS  Google Scholar 

  45. Robson SC, Dunlop W, Moore M, Hunter S. Combined Doppler and echocardiographic measurement of cardiac output: theory and application in pregnancy. Br J Obstet Gynaecol. 1987;94:1014–27.

    PubMed  CAS  Google Scholar 

  46. Robson SC, Murray A, Peart I, Heads A, Hunter S. Reproducibility of cardiac output measurement by cross sectional and Doppler echocardiography. Br Heart J. 1988;59:680–4.

    PubMed  CAS  Google Scholar 

  47. Rossi A, Cornette J, Johnson MR, Karamermer Y, Springeling T, Opic P, et al. Quantitative cardiovascular magnetic resonance in pregnant women: cross-sectional analysis of physiological parameters throughout pregnancy and the impact of the supine position. J Cardiovasc Magn Reson. 2011;13:31.

    PubMed  Google Scholar 

  48. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.

    PubMed  Google Scholar 

  49. Chen MM, Coakley FV, Kaimal A, Laros Jr RK. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112:333–40.

    PubMed  Google Scholar 

  50. Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54:2056–63.

    PubMed  CAS  Google Scholar 

  51. Clapp 3rd JF, Seaward BL, Sleamaker RH, Hiser J. Maternal physiologic adaptations to early human pregnancy. Am J Obstet Gynecol. 1988;159:1456–60.

    PubMed  Google Scholar 

  52. Duvekot JJ, Cheriex EC, Pieters FA, Menheere PP, Peeters LH. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol. 1993;169:1382–92.

    PubMed  CAS  Google Scholar 

  53. Capeless EL, Clapp JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol. 1989;161:1449–53.

    PubMed  CAS  Google Scholar 

  54. Duvekot JJ, Peeters LL. Renal hemodynamics and volume homeostasis in pregnancy. Obstet Gynecol Surv. 1994;49:830–9.

    PubMed  CAS  Google Scholar 

  55. Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68:540–3.

    PubMed  CAS  Google Scholar 

  56. Kametas NA, McAuliffe F, Cook B, Nicolaides KH, Chambers J. Maternal left ventricular transverse and long-axis systolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18:467–74.

    PubMed  CAS  Google Scholar 

  57. Kametas NA, McAuliffe F, Hancock J, Chambers J, Nicolaides KH. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet Gynecol. 2001;18:460–6.

    PubMed  CAS  Google Scholar 

  58. Metcalfe J, Ueland K. Maternal cardiovascular adjustments to pregnancy. Prog Cardiovasc Dis. 1974;16:363–74.

    PubMed  CAS  Google Scholar 

  59. Ogueh O, Brookes C, Johnson MR. A longitudinal study of the maternal cardiovascular adaptation to spontaneous and assisted conception pregnancies. Hypertens Pregnancy. 2009;28:273–89.

    PubMed  Google Scholar 

  60. Desai DK, Moodley J, Naidoo DP. Echocardiographic assessment of cardiovascular hemodynamics in normal pregnancy. Obstet Gynecol. 2004;104:20–9.

    PubMed  Google Scholar 

  61. Chapman AB, Zamudio S, Woodmansee W, Merouani A, Osorio F, Johnson A, et al. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy. Am J Physiol. 1997;273:F777–82.

    PubMed  CAS  Google Scholar 

  62. Carbillon L, Uzan M, Uzan S. Pregnancy, vascular tone, and maternal hemodynamics: a crucial adaptation. Obstet Gynecol Surv. 2000;55:574–81.

    PubMed  CAS  Google Scholar 

  63. Conrad KP. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol. 2011;301:R267–75.

    PubMed  CAS  Google Scholar 

  64. Gant NF, Chand S, Whalley PJ, MacDonald PC. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet Gynecol. 1974;43:854.

    PubMed  CAS  Google Scholar 

  65. Nisell H, Hjemdahl P, Linde B. Cardiovascular responses to circulating catecholamines in normal pregnancy and in pregnancy-induced hypertension. Clin Physiol. 1985;5:479–93.

    PubMed  CAS  Google Scholar 

  66. Schrier RW, Briner VA. Peripheral arterial vasodilation hypothesis of sodium and water retention in pregnancy: implications for pathogenesis of preeclampsia-eclampsia. Obstet Gynecol. 1991;77:632–9.

    PubMed  CAS  Google Scholar 

  67. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Physiol. 1989;256:H1060–5.

    PubMed  CAS  Google Scholar 

  68. Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy (2). N Engl J Med. 1988;319:1127–34.

    PubMed  CAS  Google Scholar 

  69. Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26:393–9.

    PubMed  CAS  Google Scholar 

  70. Koller O. The clinical significance of hemodilution during pregnancy. Obstet Gynecol Surv. 1982;37:649–52.

    PubMed  CAS  Google Scholar 

  71. Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Maternal left ventricular diastolic and systolic long-axis function during normal pregnancy. Eur J Echocardiogr. 2007;8:360–8.

    PubMed  Google Scholar 

  72. Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5:289–97.

    PubMed  Google Scholar 

  73. van Oppen AC, Stigter RH, Bruinse HW. Cardiac output in normal pregnancy: a critical review. Obstet Gynecol. 1996;87:310–8.

    PubMed  Google Scholar 

  74. Easterling TR, Benedetti TJ, Schmucker BC, Millard SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76:1061–9.

    PubMed  CAS  Google Scholar 

  75. McLennan FM, Haites NE, Rawles JM. Stroke and minute distance in pregnancy: a longitudinal study using Doppler ultrasound. Br J Obstet Gynaecol. 1987;94:499–506.

    PubMed  CAS  Google Scholar 

  76. Kinsella SM, Lohmann G. Supine hypotensive syndrome. Obstet Gynecol. 1994;83:774–88.

    PubMed  CAS  Google Scholar 

  77. Jeejeebhoy FM, Zelop CM, Windrim R, Carvalho JC, Dorian P, Morrison LJ. Management of cardiac arrest in pregnancy: a systematic review. Resuscitation. 2011;82:801–9.

    PubMed  Google Scholar 

  78. Clapp 3rd JF, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol. 1997;80:1469–73.

    PubMed  Google Scholar 

  79. Grindheim G, Estensen ME, Langesaeter E, Rosseland LA, Toska K. Changes in blood pressure during healthy pregnancy: a longitudinal cohort study. J Hypertens. 2012;30:342–50.

    PubMed  CAS  Google Scholar 

  80. Ochsenbein-Kolble N, Roos M, Gasser T, Huch R, Huch A, Zimmermann R. Cross sectional study of automated blood pressure measurements throughout pregnancy. BJOG. 2004;111:319–25.

    PubMed  CAS  Google Scholar 

  81. Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94:667–72.

    PubMed  CAS  Google Scholar 

  82. Gilson GJ, Samaan S, Crawford MH, Qualls CR, Curet LB. Changes in hemodynamics, ventricular remodeling, and ventricular contractility during normal pregnancy: a longitudinal study. Obstet Gynecol. 1997;89:957–62.

    PubMed  CAS  Google Scholar 

  83. Katz R, Karliner JS, Resnik R. Effects of a natural volume overload state (pregnancy) on left ventricular performance in normal human subjects. Circulation. 1978;58:434–41.

    PubMed  CAS  Google Scholar 

  84. Simmons LA, Gillin AG, Jeremy RW. Structural and functional changes in left ventricle during normotensive and preeclamptic pregnancy. Am J Physiol Heart Circ Physiol. 2002;283:H1627–33.

    PubMed  CAS  Google Scholar 

  85. Colan SD, Borow KM, Neumann A. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol. 1984;4:715–24.

    PubMed  CAS  Google Scholar 

  86. Bamfo JE, Kametas NA, Nicolaides KH, Chambers JB. Reference ranges for tissue Doppler measures of maternal systolic and diastolic left ventricular function. Ultrasound Obstet Gynecol. 2007;29:414–20.

    PubMed  CAS  Google Scholar 

  87. Tzemos N, Silversides CK, Carasso S, Rakowski H, Siu SC. Effect of pregnancy on left ventricular motion (twist) in women with aortic stenosis. Am J Cardiol. 2008;101:870–3.

    PubMed  Google Scholar 

  88. Yoon AJ, Song J, Megalla S, Nazari R, Akinlaja O, Pollack S, et al. Left ventricular torsional mechanics in uncomplicated pregnancy. Clin Cardiol. 2011;34:543–8.

    PubMed  Google Scholar 

  89. Yosefy C, Shenhav S, Feldman V, Sagi Y, Katz A, Anteby E. Left atrial function during pregnancy: a three-dimensional echocardiographic study. Echocardiography. 2012;29:1096–101.

    PubMed  Google Scholar 

  90. Mesa A, Jessurun C, Hernandez A, Adam K, Brown D, Vaughn WK, et al. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99:511–7.

    PubMed  CAS  Google Scholar 

  91. Robson SC, Dunlop W, Boys RJ, Hunter S. Cardiac output during labour. Br Med J (Clin Res Ed). 1987;295:1169–72.

    CAS  Google Scholar 

  92. Kjeldsen J. Hemodynamic investigations during labour and delivery. Acta Obstet Gynecol Scand Suppl. 1979;89:1–252.

    PubMed  CAS  Google Scholar 

  93. Ueland K, Hansen JM. Maternal cardiovascular dynamics. 3. Labor and delivery under local and caudal analgesia. Am J Obstet Gynecol. 1969;103:8–18.

    PubMed  CAS  Google Scholar 

  94. Lee W, Rokey R, Miller J, Cotton DB. Maternal hemodynamic effects of uterine contractions by M-mode and pulsed-Doppler echocardiography. Am J Obstet Gynecol. 1989;161:974–7.

    PubMed  CAS  Google Scholar 

  95. Danilenko-Dixon DR, Tefft L, Cohen RA, Haydon B, Carpenter MW. Positional effects on maternal cardiac output during labor with epidural analgesia. Am J Obstet Gynecol. 1996;175:867–72.

    PubMed  CAS  Google Scholar 

  96. Patton DE, Lee W, Miller J, Jones M. Maternal, uteroplacental, and fetoplacental hemodynamic and Doppler velocimetric changes during epidural anesthesia in normal labor. Obstet Gynecol. 1991;77:17–9.

    PubMed  CAS  Google Scholar 

  97. Robson SC, Boys RJ, Hunter S, Dunlop W. Maternal hemodynamics after normal delivery and delivery complicated by postpartum hemorrhage. Obstet Gynecol. 1989;74:234–9.

    PubMed  CAS  Google Scholar 

  98. Robson SC, Dunlop W, Hunter S. Haemodynamic changes during the early puerperium. Br Med J (Clin Res Ed). 1987;294:1065.

    CAS  Google Scholar 

  99. Robson SC, Hunter S, Moore M, Dunlop W. Haemodynamic changes during the puerperium: a Doppler and M-mode echocardiographic study. Br J Obstet Gynaecol. 1987;94:1028–39.

    PubMed  CAS  Google Scholar 

  100. Robson SC, Hunter S, Dunlop W. Left atrial dimension during early puerperium. Lancet. 1987;2:111–2.

    PubMed  CAS  Google Scholar 

  101. Capeless EL, Clapp JF. When do cardiovascular parameters return to their preconception values? Am J Obstet Gynecol. 1991;165:883–6.

    PubMed  CAS  Google Scholar 

  102. Turan OM, De Paco C, Kametas N, Khaw A, Nicolaides KH. Effect of parity on maternal cardiac function during the first trimester of pregnancy. Ultrasound Obstet Gynecol. 2008;32:849–54.

    PubMed  CAS  Google Scholar 

  103. Hart MV, Morton MJ, Hosenpud JD, Metcalfe J. Aortic function during normal human pregnancy. Am J Obstet Gynecol. 1986;154:887–91.

    PubMed  CAS  Google Scholar 

  104. Poppas A, Shroff SG, Korcarz CE, Hibbard JU, Berger DS, Lindheimer MD, et al. Serial assessment of the cardiovascular system in normal pregnancy. Role of arterial compliance and pulsatile arterial load. Circulation. 1997;95:2407–15.

    PubMed  CAS  Google Scholar 

  105. Macedo ML, Luminoso D, Savvidou MD, McEniery CM, Nicolaides KH. Maternal wave reflections and arterial stiffness in normal pregnancy as assessed by applanation tonometry. Hypertension. 2008;51:1047–51.

    PubMed  CAS  Google Scholar 

  106. Wykretowicz M, Krauze T, Guzik P, Piskorski J, Markwitz W, Wykretowicz A, et al. Arterial stiffness, central hemodynamics and wave reflection in normal pregnancy and control nonpregnant women. Eur J Obstet Gynecol Reprod Biol. 2011;159:49–52.

    PubMed  Google Scholar 

  107. Gyselaers W, Mullens W, Tomsin K, Mesens T, Peeters L. Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: a review. Ultrasound Obstet Gynecol. 2011;38:123–9.

    PubMed  CAS  Google Scholar 

  108. Sakai K, Imaizumi T, Maeda H, Nagata H, Tsukimori K, Takeshita A, et al. Venous distensibility during pregnancy. Comparisons between normal pregnancy and preeclampsia. Hypertension. 1994;24:461–6.

    PubMed  CAS  Google Scholar 

  109. Skudder Jr PA, Farrington DT, Weld E, Putman C. Venous dysfunction of late pregnancy persists after delivery. J Cardiovasc Surg (Torino). 1990;31:748–52.

    Google Scholar 

  110. Gyselaers W. Hemodynamics of the maternal venous compartment: a new area to explore in obstetric ultrasound imaging. Ultrasound Obstet Gynecol. 2008;32:716–7.

    PubMed  CAS  Google Scholar 

  111. Deurloo KL, Bolte AC, Twisk JW, van Vugt JM. Longitudinal Doppler measurements of spiral artery blood flow in relation to uterine artery blood flow. J Ultrasound Med. 2009;28:1623–8.

    PubMed  Google Scholar 

  112. Flo K, Wilsgaard T, Acharya G. A new non-invasive method for measuring uterine vascular resistance and its relationship to uterine artery Doppler indices: a longitudinal study. Ultrasound Obstet Gynecol. 2011;37:538–42.

    PubMed  CAS  Google Scholar 

  113. Gomez O, Figueras F, Martinez JM, del Rio M, Palacio M, Eixarch E, et al. Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome. Ultrasound Obstet Gynecol. 2006;28:802–8.

    PubMed  CAS  Google Scholar 

  114. Konje JC, Kaufmann P, Bell SC, Taylor DJ. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol. 2001;185:608–13.

    PubMed  CAS  Google Scholar 

  115. Ogueh O, Clough A, Hancock M, Johnson MR. A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy. Hypertens Pregnancy. 2011;30:243–59.

    PubMed  CAS  Google Scholar 

  116. Bernstein IM, Ziegler WF, Leavitt T, Badger GJ. Uterine artery hemodynamic adaptations through the menstrual cycle into early pregnancy. Obstet Gynecol. 2002;99:620–4.

    PubMed  Google Scholar 

  117. Flo K, Wilsgaard T, Vartun A, Acharya G. A longitudinal study of the relationship between maternal cardiac output measured by impedance cardiography and uterine artery blood flow in the second half of pregnancy. BJOG. 2010;117:837–44.

    PubMed  CAS  Google Scholar 

  118. Thaler I, Manor D, Itskovitz J, Rottem S, Levit N, Timor-Tritsch I, et al. Changes in uterine blood flow during human pregnancy. Am J Obstet Gynecol. 1990;162:121–5.

    PubMed  CAS  Google Scholar 

  119. Belfort MA, Tooke-Miller C, Allen Jr JC, Saade GR, Dildy GA, Grunewald C, et al. Changes in flow velocity, resistance indices, and cerebral perfusion pressure in the maternal middle cerebral artery distribution during normal pregnancy. Acta Obstet Gynecol Scand. 2001;80:104–12.

    PubMed  CAS  Google Scholar 

  120. Lindqvist PG, Marsal K, Pirhonen JP. Maternal cerebral Doppler velocimetry before, during, and after a normal pregnancy: a longitudinal study. Acta Obstet Gynecol Scand. 2006;85:1299–303.

    PubMed  Google Scholar 

  121. Zeeman GG, Hatab M, Twickler DM. Maternal cerebral blood flow changes in pregnancy. Am J Obstet Gynecol. 2003;189:968–72.

    PubMed  Google Scholar 

  122. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36:1813–25.

    PubMed  Google Scholar 

  123. De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010;16:250–4.

    PubMed  Google Scholar 

  124. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98, e1–2.

    PubMed  Google Scholar 

  125. Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–4.

    PubMed  Google Scholar 

  126. Anim-Nyame N, Gamble J, Sooranna SR, Johnson MR, Sullivan MH, Steer PJ. Evidence of impaired microvascular function in pre-eclampsia: a non-invasive study. Clin Sci (Lond). 2003;104:405–12.

    CAS  Google Scholar 

  127. Hasan KM, Manyonda IT, Ng FS, Singer DR, Antonios TF. Skin capillary density changes in normal pregnancy and pre-eclampsia. J Hypertens. 2002;20:2439–43.

    PubMed  CAS  Google Scholar 

  128. Houben AJ, de Leeuw PW, Peeters LL. Configuration of the microcirculation in pre-eclampsia: possible role of the venular system. J Hypertens. 2007;25:1665–70.

    PubMed  CAS  Google Scholar 

  129. Rosen L, Ostergren J, Fagrell B, Stranden E. Mechanisms for edema formation in normal pregnancy and preeclampsia evaluated by skin capillary dynamics. Int J Microcirc Clin Exp. 1990;9:257–66.

    PubMed  CAS  Google Scholar 

  130. Vollebregt KC, Boer K, Mathura KR, de Graaff JC, Ubbink DT, Ince C. Impaired vascular function in women with pre-eclampsia observed with orthogonal polarisation spectral imaging. BJOG. 2001;108:1148–53.

    PubMed  CAS  Google Scholar 

  131. Bezemer R, Khalilzada M, Ince C. Recent advancements in microcirculatory image acquisition and analysis. Yearbook Intensive Care Emerg Med. 2008;2008:677–90.

    Google Scholar 

  132. De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolien W. Roos-Hesselink MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Cornette, J., Roos-Hesselink, J.W. (2014). Normal Cardiovascular Adaptation to Pregnancy. In: Stergiopoulos, K., Brown, D. (eds) Evidence-Based Cardiology Consult. Springer, London. https://doi.org/10.1007/978-1-4471-4441-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4441-0_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4440-3

  • Online ISBN: 978-1-4471-4441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics