Skip to main content

The Brachypodium distachyon Reference Genome

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

Grasses provide the bulk of human calories but improvement in grass yields is hindered by the characteristically large and complex genomes of these species; the genomes of wheat, maize, and sugar cane are 17,000, 2300, and 10,000 Mb, respectively. Brachypodium distachyon has one of the smallest genomes of all grasses at 272 Mb, and a number of key traits that make it a good model grass. Brachypodium was the fourth sequenced grass genome, after rice, Sorghum, and maize, and was the first sequenced in the Pooideae subfamily, a diverse group that includes wheat, barley, oat, and rye. The Brachypodium genome was sequenced using a whole genome shotgun approach with Sanger sequencing and is nearly complete with 99.6 % of the sequences anchored to five chromosomes. Sequencing of Brachypodium enabled comparative genomic analysis of grass genomes and shed light on processes involved in chromosome fusions and maintenance of a small genome. The high-quality Brachypodium genome sequence provides a framework for gene expression atlases, resequencing, quantitative trait loci (QTL) mapping, GWAS, and ENCODE datasets. The wealth of Brachypodium genomic resources have cemented its utility as a model organism and will facilitate translational work for improving the grasses that feed the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAC:

Bacterial artificial chromosome

cM:

centiMorgan

contigs:

contiguous pieces

ENCODE:

Encyclopedia of DNA Elements

EST:

Expressed sequence tags

GWAS:

Genome-wide association study

indel:

Insertion/deletion

mb:

Megabase

MYA:

Million years ago

NGS:

Next generation sequencing

RNAseq:

RNA sequencing

SMRT:

Single molecule real time

SNP:

Single nucleotide polymorphism

SV:

Structural variant

TD:

Tandem duplications

TILLING:

Targeting Induced Local Lesion IN Genome

WGS:

Whole genome shotgun

References

  • Albert VA, Barbazuk WB, Der JP, Leebens-Mack J, Ma H, Palmer JD, et al. The Amborella genome and the evolution of flowering plants. Science. 2013;342(6165):1241089.

    Article  Google Scholar 

  • Allen JE, Salzberg SL. JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics. 2005;21(18):3596–603.

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408(6814):796.

    Article  Google Scholar 

  • Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, et al. ARACHNE: a whole-genome shotgun assembler. Genome Res. 2002;12(1):177–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30(6):555–61.

    Article  CAS  PubMed  Google Scholar 

  • Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, et al. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One. 2012;7(9):e41916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandham P, Bennett S. Nuclear DNA amounts in diploid and tetraploid Oropetium (Poaceae). Kew Bulletin. 1995;50:601–4.

    Article  Google Scholar 

  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, et al. Brachypodium as a model for the grasses: today and the future. Plant Physiol. 2011;157(1):3–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, et al. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22(8):2537–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. Omics. 2011;15(11):791–9.

    Article  CAS  PubMed  Google Scholar 

  • Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–9.

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, et al. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One. 2012;7(6):e38333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O, d’Yvoire MB, et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One. 2013;8(6):e65503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edger PP, Pires JC. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 2009;17(5):699–717.

    Article  CAS  PubMed  Google Scholar 

  • Elert E. Rice by the numbers: a good grain. Nature. 2014;514:50.

    Article  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proc Natl Acad Sci. 2009;106(14):5737–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812–8.

    Article  CAS  PubMed  Google Scholar 

  • Godfray H, Pretty J, Thomas S, Warham E, Beddington J. Linking policy on climate and food. Science. 2011;331(6020):1013–4.

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002;296(5565):92–100.

    Article  CAS  PubMed  Google Scholar 

  • Gordon SP, Priest H, Des Marais DL, Schackwitz W, Figueroa M, Martin J, et al. Genome diversity in Brachypodium distachyon: deep sequencing of highly diverse inbred lines. Plant J. 2014;79(3):361–74.

    Article  CAS  PubMed  Google Scholar 

  • Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu S-H. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol. 2008;148(2):993–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatch MD, Slack CR. Photosynthesis by sugar-cane leaves. Biochem J. 1966;101:103–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • http://Brachypodium.pw.usda.gov.

  • http://pgsb.helmholtz-muenchen.de/plant/recat/index.jsp. Accessed 8 March 2015.

  • Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, et al. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 2001;29(1):102–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huo N, Garvin DF, You FM, McMahon S, Luo M-C, Gu YQ, et al. Comparison of a high-density genetic linkage map to genome features in the model grass Brachypodium distachyon. Theor Appl Genet. 2011;123(3):455–64.

    Article  PubMed  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449(7161):463–7.

    Article  CAS  PubMed  Google Scholar 

  • Jeong D-H, Schmidt SA, Rymarquis LA, Park S, Ganssmann M, German MA, et al. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol. 2013;14(12):R145.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jiao Y, Li J, Tang H, Paterson AH. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell. 2014;26(7):2792–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung K-H, An G, Ronald PC. Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet. 2008;9(2):91–101.

    CAS  PubMed  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K. Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet. 1994;88(6–7):722–6.

    Article  CAS  PubMed  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40(D1):D1202–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lane AK, Niederhuth CE, Ji L, Schmitz RJ. pENCODE: a plant encyclopedia of DNA elements. Annu Rev Genet. 2014;48:49–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leister D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet. 2004;20(3):116–22.

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A. 2006;103(13):5224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandadi KK, Scholthof K-BG. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell. 2015;27(1):71–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345(6194):1251788.

    Article  Google Scholar 

  • Michael TP, VanBuren R. Progress, challenges and the future of crop genomes. Curr Opin Plant Biol. 2015;24:71–81.

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature. 2008;452(7190):991–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mockler T, Michael T, Priest H, Shen R, Sullivan C, Givan S, et al. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. In: Cold Spring Harbor Symposia on quantitative biology. Cold Spring Harbor Laboratory Press; 2007;72:353–63.

    Google Scholar 

  • Paterson A, Bowers J, Chapman B. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A. 2004;101(26):9903–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457(7229):551–6.

    Article  CAS  PubMed  Google Scholar 

  • Priest HD, Fox SE, Rowley ER, Murray JR, Michael TP, Mockler TC. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress. PLoS One. 2014;9(1):e87499.

    Article  PubMed Central  PubMed  Google Scholar 

  • Project IRGS. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800.

    Article  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR. Current challenges in de novo plant genome sequencing and assembly. Genome Biol. 2012;13(4):243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schatz MC, Maron LG, Stein JC, Wences AH, Gurtowski J, Biggers E, et al. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol. 2014;15:506.

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, et al. The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res. 2008;36(Supp 1):D1028–33.

    CAS  PubMed  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci. 2010;107(1):472–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–604.

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, et al. EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet. 2006;113(2):186–95.

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463(7282):763–8.

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics. 2009;9(4):499–511.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Gaeta RT, Pires JC. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci. 2011;108(19):7908–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002;296(5565):79–92.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics. 2009;10(1):449.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Mockler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

VanBuren, R., Mockler, T.C. (2015). The Brachypodium distachyon Reference Genome. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_15

Download citation

Publish with us

Policies and ethics