Skip to main content

Geochemical Approaches to Improve Nutrient Source Tracking in the Great Lakes

  • Chapter
  • First Online:
Contaminants of the Great Lakes

Abstract

Water quality issues that lead to freshwater eutrophication are a rapidly intensifying global concern, and the recent increase in eutrophic conditions in the Great Lakes has gained international attention. The Great Lakes account for over 85% of North America’s freshwater supply and have had a history of water quality problems that peaked in the early 1970s with cultural eutrophication in Lake Erie. Despite many coordinated efforts that attempt to link eutrophication to phosphorus, it is becoming clear that knowledge gaps exist in understanding nutrient dynamics and their relationship to cyanobacterial biomass development across temporal and spatial scales. New geochemical approaches (compositional and isotopic) can improve our understanding of the relationships between the fundamental processes regulating nutrient dynamics from terrestrial and aquatic sources (biotic and abiotic) and the adaptive metabolic responses that promote cyanobacteria growth in different environmental conditions. An understanding of the underlying mechanisms responsible for the fate and transport of nutrients from point and non-point source emitters through to their final point of deposition (or metabolic uptake) will expose the causal links that drive primary production at each stage of the system and provide strategic targets to control eutrophication. A comprehensive understanding of the chemical and environmental factors that influence the measurement, monitoring, and identification of pollution sources responsible for water quality issues will lead to better policy decisions and long-term protection of our freshwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):aad2622

    Article  CAS  Google Scholar 

  2. Burns D, Lynch J, Cosby B, Fenn M, Baron J (2011) National acid precipitation assessment program report to congress 2011: an integrated assessment. National Science and Technology Council, Washington

    Google Scholar 

  3. International Joint Commission United States and Canada (1994) Revised great lakes water quality agreement of 1978. https://www.ijc.org/sites/default/files/GLWQA_e.pdf. Last accessed 26 May 2020

  4. Scavia D, Allan JD, Arend KK, Bartell S, Beletsky D, Bosch NS, Brandt SB, Briland RD, Daloğlu I, DePinto JV (2014) Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J Great Lakes Res 40(2):226–246

    Article  CAS  Google Scholar 

  5. Scheffer M, van Nes EH. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. In: Donk RDGLDPV (ed) Shallow lakes in a changing world, Netherlands, 5–9 June 2005. Springer, pp 455–466

    Google Scholar 

  6. Downing JA, Watson SB, McCauley E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58(10):1905–1908

    Article  Google Scholar 

  7. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154(3):157–164

    Article  CAS  Google Scholar 

  8. Mohamed MN, Wellen C, Parsons CT, Taylor WD, Arhonditsis G, Chomicki KM, Boyd D, Weidman P, Mundle SO, Cappellen PV (2019) Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities. Freshwater Sci 38(4):675–691

    Article  Google Scholar 

  9. Watson SB, Miller C, Arhonditsis G, Boyer GL, Carmichael W, Charlton MN, Confesor R, Depew DC, Höök TO, Ludsin SA (2016) The re-eutrophication of Lake Erie: harmful algal blooms and hypoxia. Harmful Algae 56:44–66

    Article  CAS  Google Scholar 

  10. Aggarwal P, Gat J, Froehlich K (2005) Isotopes in the water cycle: past, present and future of a developing science. Springer, Dordrecht

    Book  Google Scholar 

  11. Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Article  Google Scholar 

  12. Schindler DW, Hecky R, Findlay D, Stainton M, Parker B, Paterson M, Beaty K, Lyng M, Kasian S (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci 105(32):11254–11258

    Article  CAS  Google Scholar 

  13. Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51(1 part2):356–363

    Article  Google Scholar 

  14. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1 part2):364–376

    Article  CAS  Google Scholar 

  15. Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48(1):55–67

    Article  Google Scholar 

  16. O’neil J, Davis T, Burford M, Gobler C (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  CAS  Google Scholar 

  17. Verspagen J, Van de Waal DB, Finke JF, Visser PM, Huisman J (2014) Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol Lett 17(8):951–960

    Article  Google Scholar 

  18. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99

    Article  Google Scholar 

  19. Chaffin JD, Bridgeman TB (2014) Organic and inorganic nitrogen utilization by nitrogen-stressed cyanobacteria during bloom conditions. J Appl Phycol 26(1):299–309

    Article  CAS  Google Scholar 

  20. Elsbury KE, Paytan A, Ostrom NE, Kendall C, Young MB, McLaughlin K, Rollog ME, Watson S (2009) Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ Sci Technol 43(9):3108–3114

    Article  CAS  Google Scholar 

  21. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161(1–3):291–314

    Article  CAS  Google Scholar 

  22. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111(51):18273–18278

    Article  CAS  Google Scholar 

  23. van Stempvoort D, Maathuis H, Jaworski E, Mayer B, Rich K (2005) Oxidation of fugitive methane in ground water linked to bacterial sulfate reduction. Groundwater 43(2):187–199

    Article  Google Scholar 

  24. Sobek S, DelSontro T, Wongfun N, Wehrli B (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39(1):L01401

    Article  CAS  Google Scholar 

  25. DelSontro T, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44(7):2419–2425

    Article  CAS  Google Scholar 

  26. Casper P, Maberly SC, Hall GH, Finlay BJ (2000) Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry 49(1):1–19

    Article  CAS  Google Scholar 

  27. Savir Y, Noor E, Milo R, Tlusty T (2010) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci 107(8):3475–3480

    Article  CAS  Google Scholar 

  28. Pennuto C, Dayton L, Kane D, Bridgeman T (2014) Lake Erie nutrients: from watersheds to open water. J Great Lakes Res 3(40):469–472

    Article  Google Scholar 

  29. Tiffany MA, Winchester JW, Loucks RH (1969) Natural and pollution sources of iodine, bromine, and chlorine in the Great Lakes. J Water Pollut Control Fed 41(7):1319–1329

    CAS  Google Scholar 

  30. Mariotti A, Létolle R (1977) Application de l'étude isotopique de l'azote en hydrologie et en hydrogéologie – analyse des résultats obtenus sur un exemple précis: Le Bassin de Mélarchez (Seine-et-Marne, France). J Hydrol 33(1–2):157–172

    Article  CAS  Google Scholar 

  31. Leibundgut C, Maloszewski P, Kulls C (2009) Tracers in hydrogeology. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  32. Colborne S, Maguire T, Mayer B, Nightingale M, Enns G, Fisk A, Drouillard K, Mohamed M, Weisener C, Wellen C (2019) Water and sediment as sources of phosphate in aquatic ecosystems: the Detroit River and its role in the Laurentian Great Lakes. Sci Total Environ 647:1594–1603

    Article  CAS  Google Scholar 

  33. Watmough SA, Eimers SA, Aherne J, Dillon PJ (2004) Climate effects on stream nitrate concentrations at 16 forested catchments in South Central Ontario. Environ Sci Technol 38(8):2383–2388

    Article  CAS  Google Scholar 

  34. Maguire TJ, Spencer C, Grgicak-Mannion A, Drouillard K, Mayer B, Mundle SO (2019) Distinguishing point and non-point sources of dissolved nutrients, metals, and legacy contaminants in the Detroit River. Sci Total Environ 681:1–8

    Article  CAS  Google Scholar 

  35. Maguire TJ, Wellen C, Stammler KL, Mundle SOC (2018) Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture. Sci Total Environ 633:433–440

    Article  CAS  Google Scholar 

  36. Phillips FM (1998) Ground water dating and isotope chemistry. In: Hydrologic science: taking stock and looking ahead. The National Academies Press, Washington, pp 87–100

    Google Scholar 

  37. Hunkeler D, Meckenstock RU, Sherwood Lollar B, Schmidt TC, Wilson J, Schmidt T, Wilson J (2008) A guide for assessing biodegradation and source identification of organic ground water contaminants using compound specific isotope analysis (CSIA). Office of Research and Development, National Risk Management Research Laboratory, US Environmental Protection Agency

    Google Scholar 

  38. Mundle SO, Spain JC, Lacrampe-Couloume G, Nishino SF, Lollar BS (2017) Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666. Sci Total Environ 605:99–105

    Article  CAS  Google Scholar 

  39. Dominato KR, Rostron BJ, Hendry MJ, Schmeling EE, Sandau CD, Mundle SO (2018) Developing deep high-resolution concentration and 13C isotope profiles for methane, ethane, and propane. J Pet Sci Eng 170:280–290

    Article  CAS  Google Scholar 

  40. Sandau CD, Prokipchuk M, Dominato KR, Mundle SO (2019) Soil gas investigation of an alleged gas migration issue on a residential farm located above the Weyburn-Midale CO2 enhanced oil recovery project. Int J Greenhouse Gas Control 81:11–20

    Article  CAS  Google Scholar 

  41. Hendry MJ, Schmeling EE, Barbour SL, Huang M, Mundle SO (2017) Fate and transport of shale-derived, biogenic methane. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  42. Mundle SO, Johnson T, Lacrampe-Couloume G, Pérez-de-Mora A, Duhamel M, Edwards EA, McMaster ML, Cox E, Révész K, Sherwood Lollar B (2012) Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA). Environ Sci Technol 46(3):1731–1738

    Article  CAS  Google Scholar 

  43. Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ Sci Technol 39(18):6896–6916

    Article  CAS  Google Scholar 

  44. Lee MS (2012) Mass spectrometry handbook. Wiley, Hoboken

    Book  Google Scholar 

  45. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66(6):1095–1104

    Article  CAS  Google Scholar 

  46. Cook PG, Herczeg AL (2012) Environmental tracers in subsurface hydrology. Springer, New York

    Google Scholar 

  47. Kristensen E, Madsen-Østerbye M, Massicotte P, Pedersen O, Markager S, Kragh T (2018) Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach. Biogeosciences 15(4):1203–1216

    Article  CAS  Google Scholar 

  48. Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science, vol 2. Blackwell Publishing, Hoboken, pp 375–449

    Chapter  Google Scholar 

  49. Breffle WS, Muralidharan D, Donovan RP, Liu F, Mukherjee A, Jin Y (2013) Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the great lakes environment: a Lake Michigan case study. Resour Policy 38(2):152–161

    Article  Google Scholar 

  50. Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM, Van Breda SG (2018) Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health 15(7):1557

    Article  CAS  Google Scholar 

  51. Health Canada (2013) Guidelines for Canadian drinking water quality: guideline technical document – nitrate and nitrite. https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/water-nitrate-nitrite-eau/alt/water-nitrate-nitrite-eau-eng.pdf. Last accessed 26 May 2020

  52. Canadian Council of Minister of the Environment (2017) Water quality guidelines for the protection of aquatic life. http://ceqg-rcqe.ccme.ca/en/index.html#void. Last accessed 26 May 2020

  53. Pantelić N, Dramićanin AM, Milovanović DB, Popović-Đorđević JB, Kostić AŽ (2017) Evaluation of the quality of drinking water in Rasina District, Serbia: physicochemic. Rom J Phys 62:9–10

    Google Scholar 

  54. Kumar S, Sterner RW, Finlay JC (2008) Nitrogen and carbon uptake dynamics in Lake Superior. J Geophys Res 113(G4):G04003

    Article  CAS  Google Scholar 

  55. McDonald CP, Urban NR, Casey CM (2010) Modeling historical trends in Lake Superior total nitrogen concentrations. J Great Lakes Res 36(4):715–721

    Article  CAS  Google Scholar 

  56. Rowe MD, Kreis RG, Dolan DM (2014) A reactive nitrogen budget for Lake Michigan. J Great Lakes Res 40(1):192–201

    Article  CAS  Google Scholar 

  57. Dove A, Chapra SC (2015) Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnol Oceanogr 60(2):696–721

    Article  CAS  Google Scholar 

  58. Han H, Allan JD (2012) Uneven rise in N inputs to the Lake Michigan Basin over the 20th century corresponds to agricultural and societal transitions. Biogeochemistry 109(1–3):175–187

    Article  CAS  Google Scholar 

  59. Eimers MC, Watmough SA (2016) Increasing nitrate concentrations in streams draining into Lake Ontario. J Great Lakes Res 42(2):356–363

    Article  CAS  Google Scholar 

  60. Lambrix MM, Chaffin JD (2018) Nutrient limitations in the central basin of Lake Erie. Ohio J Sci 118(1):A52

    Google Scholar 

  61. North RL, Guildford SJ, Smith REH, Havens SM, Twiss MR (2007) Evidence for phosphorus, nitrogen, and iron colimitation of phytoplankton communities in Lake Erie. Limnol Oceanogr 52(1):315–328

    Article  CAS  Google Scholar 

  62. Orihel DM, Bird DF, Brylinsky M, Chen H, Donald DB, Huang DY, Giani A, Kinniburgh D, Kling H, Kotak BG (2012) High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Can J Fish Aquat Sci 69(9):1457–1462

    Article  CAS  Google Scholar 

  63. Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97

    Article  CAS  Google Scholar 

  64. Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrosc 17(16):1835–1846

    Article  CAS  Google Scholar 

  65. Baertschi P (1976) Absolute 18O content of standard mean ocean water. Earth Planet Sci Lett 31(3):341–344

    Article  CAS  Google Scholar 

  66. Yoneyama T, Kouno K, Yazaki J (1990) Variation of natural 15N abundance of crops and soils in Japan with special reference to the effect of soil conditions and fertilizer application. Soil Sci Plant Nutr 36(4):667–675

    Article  CAS  Google Scholar 

  67. Zhang Y, Shi P, Song J, Li Q (2019) Application of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: a review. Appl Sci 9(1):18

    Article  CAS  Google Scholar 

  68. Fawcett WR (2005) Charge distribution effects in the solution chemistry of polyatomic ions. Condens Matter Phys 8(2(42)):413–424

    Article  Google Scholar 

  69. Kaneko M, Poulson SR (2013) The rate of oxygen isotope exchange between nitrate and water. Geochim Cosmochim Acta 118:148–156

    Article  CAS  Google Scholar 

  70. Kool DM, Wrage N, Oenema O, Van Kessel C, Van Groenigen JW (2011) Oxygen exchange with water alters the oxygen isotopic signature of nitrate in soil ecosystems. Soil Biol Biochem 43(6):1180–1185

    Article  CAS  Google Scholar 

  71. Lange J, Payraudeau S, Imfeld G (2016) Non-conservative characteristics of fluorescent tracers help to assess in-situ transport and attenuation of pesticides. In: Paper presented at the EGU general assembly, Vienna, Austria, 17–22 Apr 2016

    Google Scholar 

  72. Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293(3):284–301

    Article  CAS  Google Scholar 

  73. Bluteau CV, Massé DI, Leduc R (2009) Ammonia emission rates from dairy livestock buildings in eastern Canada. Biosyst Eng 103(4):480–488

    Article  Google Scholar 

  74. Ariz I, Cruz C, Moran JF, González-Moro MB, García-Olaverri C, González-Murua C, Martins-Loução MA, Aparicio-Tejo PM (2011) Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants. BMC Plant Biol 11:83

    Article  CAS  Google Scholar 

  75. Kendall C, McDonnel JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  76. State of the Great Lakes 2017 Technical Report (2017) Environment and Climate Change Canada and U.S. Environmental Protection Agency

    Google Scholar 

  77. Delwiche WW (1970) The nitrogen cycle. Sci Am 223(3):136–147

    Article  Google Scholar 

  78. Casciotti KL, Sigman DM, Hastings MG, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74(19):4905–4912

    Article  CAS  Google Scholar 

  79. Coplen TB, Böhlke JK, Casciotti KL (2004) Using dual-bacterial denitrification to improve delta15N determinations of nitrates containing mass-independent 17O. Rapid Commun Mass Spectrom 18(3):245–250

    Article  CAS  Google Scholar 

  80. Olofsson M, Robertson EK, Edler L, Arneborg L, Whitehouse MJ, Ploug H (2019) Nitrate and ammonium fluxes to diatoms and dinoflagellates at a single cell level in mixed field communities in the sea. Sci Rep 9(1424):1–12

    Google Scholar 

  81. Amberger A, Schmidt HL (1987) Natürliche isotopengehalte von nitrat als indikatoren für dessen herkunft. Geochim Cosmochim Acta 51(10):2699–2705

    Article  CAS  Google Scholar 

  82. McIlvin M, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77(17):5589–5595

    Article  CAS  Google Scholar 

  83. Altabet MA, Wassenaar LI, Douence C, Roy R (2019) A Ti (III) reduction method for one-step conversion of seawater and freshwater nitrate into N2O for stable isotopic analysis of 15N/14N, 18O/16O and 17O/16O. Rapid Commun Mass Spectrom 33(15):1227–1239

    Article  CAS  Google Scholar 

  84. Bremner JM, Keeney DR (1965) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Sci Soc Am J 30(5):577–582

    Article  Google Scholar 

  85. Holmes RM, McClelland JW, Sigman DM, Fry B, Peterson BJ (1998) Measuring 15N–NH4+ in marine, estuarine and fresh waters: an adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Mar Chem 60(3–4):235–243

    Article  CAS  Google Scholar 

  86. Kendall C, Grimm E (1990) Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal Chem 62(5):526–529

    Article  CAS  Google Scholar 

  87. Liu D, Fang Y, Tu Y, Pan Y (2014) Chemical method for nitrogen isotopic analysis of ammonium at natural abundance. Anal Chem 86(8):3787–3792

    Article  CAS  Google Scholar 

  88. Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) A new approach to determine method detection limits for compound-specific isotope analysis of volatile organic compounds. Rapid Commun Mass Spectrom 20(24):3639–3648

    Article  CAS  Google Scholar 

  89. Björkman M, Kühnel R, Partridge D, Roberts T, Aas W, Mazzola M, Viola A, Hodson A, Ström J, Isaksson E (2013) Nitrate dry deposition in Svalbard. Tellus B Chem Phys Meteorol 65:19071

    Article  CAS  Google Scholar 

  90. Van Breemen N, Boyer E, Goodale C, Jaworski N, Paustian K, Seitzinger S, Lajtha K, Mayer B, Van Dam D, Howarth R (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57(1):267–293

    Article  Google Scholar 

  91. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci 110(45):18185–18189

    Article  CAS  Google Scholar 

  92. Strohm TO, Griffin B, Zumft WG, Schink B (2007) Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73(5):1420–1424

    Article  CAS  Google Scholar 

  93. Cabello P, Roldán MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150(11):3527–3546

    Article  CAS  Google Scholar 

  94. Horwarth WH (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8(1):14–20

    Article  CAS  Google Scholar 

  95. Ryzhakov AV, Kukkonen NA, Lozovik PA (2010) Determination of the rate of ammonification and nitrification in natural water by kinetic method. Water Resour 37(1):70–74

    Article  CAS  Google Scholar 

  96. Sebilo M, Mayer B, Grably M, Billiou D, Mariotti A (2004) The use of the ‘ammonium diffusion’ method for δ15N-NH4+ and δ15N-NO3− measurements: comparison with other techniques. Environ Chem 1(2):99–103

    Article  CAS  Google Scholar 

  97. Mariotti A, Germon C, Hubert P, Kaiser P, Létolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification process. Plant Soil 62(3):413–430

    Article  CAS  Google Scholar 

  98. Granger J, Wankel SD (2016) Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of environmental nitrogen cycling. Proc Natl Acad Sci U S A 113(42):E6391–E6400

    Article  CAS  Google Scholar 

  99. Druhan JL, Winnick MJ, Thullner M (2019) Stable isotope fractionation by transport and transformation. Rev Mineral Geochem 85(1):239–264

    Article  Google Scholar 

  100. Eimers MC, Paterson AM, Dillon PJ, Schiff SL, Cumming BF, Hall RI (2006) Lake sediment core records of Sulphur accumulation and Sulphur isotopic composition in Central Ontario, Canada Lakes. J Paleolimnol 35(1):99–109

    Article  Google Scholar 

  101. Cable RN, Beletsky D, Beletsky R, Wigginton K, Locke BW, Duhaime MB (2017) Distribution and modeled transport of plastic pollution in the Great Lakes, the world’s largest freshwater resource. Front Environ Sci 5:45

    Article  Google Scholar 

  102. Olmsted J, Williams GM (1997) The composition of molecules. In: Chemistry: the molecular science2nd edn. WCB Publishers, Fullerton, pp 81–142

    Google Scholar 

  103. Selck BJ, Carling GT, Kirby SM, Hansen NC, Bickmore BR, Tingey DG, Rey K, Wallace J, Jordan JL (2018) Investigating anthropogenic and geogenic sources of groundwater contamination in a semi-arid Alluvial Basin, Goshen Valley, UT, USA. Water Air Soil Pollut 229(6):186

    Article  CAS  Google Scholar 

  104. Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests: effects of air pollution and forest management. Environ Rev 14(1):1–57

    Article  CAS  Google Scholar 

  105. Yun S-I, Ro H-M (2014) Can nitrogen isotope fractionation reveal ammonia oxidation responses to varying soil moisture? Soil Biol Biochem 76:136–139

    Article  CAS  Google Scholar 

  106. Bozau E, Knöller K, Strauch G (2006) Nitrate degradation without 15N enrichment: a hydrochemical and isotopic study of a fractured rock aquifer including embedded lakes. Isot Environ Health Stud 42(3):251–260

    Article  CAS  Google Scholar 

  107. Kahmen A, Wanek W, Buchmann N (2008) Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oncologia 156(4):861–870

    Google Scholar 

  108. Böttcher J, Strebel O, Voerkelius S, Schmidt HL (1991) Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114(3–4):413–424

    Google Scholar 

  109. Durka W, Schulze E, Gebauer G, Voerkellus S (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372(6508):765–767

    Article  CAS  Google Scholar 

  110. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7(3):737–750

    Google Scholar 

  111. Pennino MJ, Compton JE, Leibowitz SG (2017) Trends in drinking water nitrate violations across the United States. Environ Sci Technol 51(22):13450–13460

    Article  CAS  Google Scholar 

  112. Wakida FT, Lerner DN (2005) Non-agricultural source of groundwater nitrate: a review and case study. Water Res 39(1):3–16

    Article  CAS  Google Scholar 

  113. Kruk M, Mayer B (2015) Stable isotope tracing of sources of nitrate in aquatic systems: examples from rivers in southern Alberta paper presented at the GeoConvention, Calgary, AB, 4–8 May 2015

    Google Scholar 

  114. Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus B 42(3):304–307

    Google Scholar 

  115. Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118(2):124–131

    Article  CAS  Google Scholar 

  116. Cape JN, Tang YS, Van Dijk N, Love L, Sutton MA, Palmer SCF (2014) Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environ Pollut 132(3):469–478

    Article  CAS  Google Scholar 

  117. Stratton JJ, Ham JM, Williams C, Roosendaal D, Borch T (2011) Assessing the ability of nitrogen isotopes to distinguish ammonia sources affecting Rocky Mountain National Park. In: Paper presented at the American Geophysical Union, San Francisco, Fall Meeting 2011

    Google Scholar 

  118. Handely LL, Scrimgeour CM (1997) Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv Ecol Resour 27:133–212

    Article  Google Scholar 

  119. Griffiths NA, Jackson CR, McDonnel JJ, Klaus J, Du E, Bitew MM (2016) Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds. J Geophys Res Biogeo 121(2):422–437

    Article  CAS  Google Scholar 

  120. Mohamed MN, Wellen C, Parsons CT, Taylor WD, Arhonditsis G, Chomicki KM, Boyd D, Weidman P, Mundle SOC, Van Cappellen P, Sharpley AN, Haffner GD (2019) Understanding and managing the re-eutrophication of Lake Erie: knowledge gaps and research priorities. Freshwater Sci 38(4):675–691

    Google Scholar 

  121. Schoffman H, Lis H, Shaked Y, Keren N (2016) Iron-nutrient interactions within phytoplankton. Front Plant Sci 7:1223

    Article  Google Scholar 

  122. Li D, Cong W, Cai Z, Shi D, Ouyang F (2005) Effect of iron stress, light stress, and nitrogen source on physiological aspects of marine red tide alga. J Plant Nutr 27(1):29–41

    Article  CAS  Google Scholar 

  123. Molot LA, Watson SB, Creed IF, Trick CG, McCabe SK, Verschoor MJ, Sorichetti RJ, Powe C, Venkiteswaran JJ, Schiff SL (2014) A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshw Biol 59:132–140

    Article  CAS  Google Scholar 

  124. Havens SM, Hassler CS, North RL, Guildford SJ, Silsbe G, Wilhelm SW, Twissa MR (2012) Iron plays a role in nitrate drawdown by phytoplankton in Lake Erie surface waters as observed in lake-wide assessments. Can J Fish Aquat Sci 69(2):369–381

    Article  CAS  Google Scholar 

  125. Kajimura M, Croke SJ, Glover CN, Wood CN (2004) Dogmas and controversies in the handling of nitrogenous wastes: the effect of feeding and fasting on the excretion of ammonia, urea and other nitrogenous waste products in rainbow trout. J Exp Biol 207:1993–2002

    Article  CAS  Google Scholar 

  126. Rueter JG, Ades DR (1987) The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). J Psychol 23:452–457

    CAS  Google Scholar 

  127. Hecky R, Hesslein R (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Benthol Soc 14(4):631–653

    Article  Google Scholar 

  128. Loick-Wilde N, Weber SC, Conroy BJ, Capone DG, Coles VJ, Medeiros PM, Steinberg DK, Montoya JP (2015) Nitrogen sources and net growth efficiency of zooplankton in three amazon river plume food webs. Limnol Oceanogr 61(2):460–481

    Article  CAS  Google Scholar 

  129. Mulholland PJ, Helton AM, Thomas SM (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205

    Article  CAS  Google Scholar 

  130. Boshers DS, Granger J, Tobias CR, Bo JK, Smith RL (2019) Constraining the oxygen isotopic composition of nitrate produced by nitrification. Environ Sci Technol 53(3):1206–1216

    Article  CAS  Google Scholar 

  131. Buchwald C, Casciotti KL (2010) Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr 55(3):1064–1074

    Article  CAS  Google Scholar 

  132. Bollmann A, Bullerjahn GS, McKay RM (2014) Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and superior. PLoS One 9(5):e97068

    Article  CAS  Google Scholar 

  133. Verschoor MJ, Powe CR, McQuay E, Schiff SL, Venkiteswaran JJ, Li J, Molotd LA (2017) Internal iron loading and warm temperatures are preconditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Can J Fish Aquat Sci 74(9):1439–1453

    Article  CAS  Google Scholar 

  134. Biddau R, Cidu R, Da Pelo S, Carletti A, Ghiglieri G, Pittalis D (2019) Source and fate of nitrate in contaminated groundwater systems: assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Sci Total Environ 647:1121–1136

    Article  CAS  Google Scholar 

  135. Smolders AJP, Lucassen ECHET, Bobbink R, Roelofs JGM, Lamers LPM (2010) How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the Sulphur bridge. Biogeochemistry 98(1–3):1–7

    Article  CAS  Google Scholar 

  136. Seiler RL (2005) Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Appl Geochem 20(9):1626–1636

    Article  CAS  Google Scholar 

  137. Dailey KR, Welch KA, Lyons WB (2014) Evaluating the influence of road salt on water quality of Ohio rivers over time. Appl Geochem 47:25–35

    Article  CAS  Google Scholar 

  138. Foos A (2003) Spatial distribution of road salt contamination of natural springs and seeps, Cuyahoga Falls, Ohio, USA. Environ Geol 44(1):14–19

    Article  CAS  Google Scholar 

  139. Koryak M, Stafford LJ, Reilly RJ, Magnuson PM (2001) Highway deicing salt runoff events and major ion concentrations along a small urban stream. J Freshw Ecol 16(1):125–134

    Article  CAS  Google Scholar 

  140. United States Geological Survey (2019) Salt statistics and information. https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/mcs-2019-salt.pdf. Last accessed 26 May 2020

  141. Government of Canada (2018) Code of practice: road salts environmental management. https://www.canada.ca/en/environment-climate-change/services/pollutants/road-salts/code-practice-environmental-management.html. Last accessed 26 May 2020

  142. Perera N, Gharabaghi B, Noehammer P, Kilgour B (2010) Road salt application in Highland Creek watershed, Toronto, Ontario-chloride mass balance. Water Qual Res J 45(4):451–461

    Article  CAS  Google Scholar 

  143. Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC technical report). Pure Appl Chem 83(2):397–410

    Article  CAS  Google Scholar 

  144. Bonifacie M (2018) Chlorine isotopes. In: White WM (ed) Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth

    Google Scholar 

  145. Eggenkamp H (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, New York

    Book  Google Scholar 

  146. Phillips F (2013) Chlorine-36 dating of old groundwater. In: Suckow A, Aggarwal P, Araguás L (eds) Isotope methods for dating old groundwater. International Atomic Energy Agency, Vienna

    Google Scholar 

  147. Sherif MI, Sultan M, Sturchio NC (2019) Chlorine isotopes as tracers of solute origin and age of groundwaters from the Eastern Desert of Egypt. Earth Planet Sci Lett 510:37–44

    Article  CAS  Google Scholar 

  148. Nimz GJ (1998) Lithogenic and cosmogenic tracers in catchment hydrology. In: Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 247–289

    Chapter  Google Scholar 

  149. Barnes JD, Sharp ZD (2017) Chlorine isotope geochemistry. Rev Mineral Geochem 82(1):345–378

    Article  CAS  Google Scholar 

  150. Sharp Z, Barnes JD, Brearley A, Chaussidon M, Fischer T, Kamenetsky V (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446(7139):1062–1065

    Article  CAS  Google Scholar 

  151. Xiao YK, Zhang CG (1992) High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Int J Mass Spectrom Ion Process 116(3):183–192

    Article  CAS  Google Scholar 

  152. Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology – a review. Anal Methods 8(5):942–957

    Article  Google Scholar 

  153. Vengosh A, Chivas AR, McCulloch MT (1989) Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem Geol Isot Geosci Sect 79(4):333–343

    Article  CAS  Google Scholar 

  154. Zhu C (1993) New pH sensor for hydrothermal fluids. Geology 21(11):983–986

    Article  CAS  Google Scholar 

  155. Fujitani T, Yamashita K, Numata M, Kanazawa N, Nakamura N (2010) Measurement of chlorine stable isotopic composition by negative thermal ionization mass spectrometry using total evaporation technique. Geochem J 44(3):241–246

    Article  CAS  Google Scholar 

  156. Willmore C, Boudreau A, Spivack A, Kruger F (2002) Halogens of Bushveld complex, South Africa: δ37Cl and Cl/F evidence for hydration melting of the source region in a back-arc setting. Chem Geol 182(2–4):503–511

    Article  CAS  Google Scholar 

  157. Layne G, Godon A, Webster J, Bach W (2004) Secondary ion mass spectrometry for the determination of δ37Cl: part I. Ion microprobe analysis of glasses and fluids. Chem Geol 207(3–4):277–289

    Article  CAS  Google Scholar 

  158. John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308(1–2):65–76

    Article  CAS  Google Scholar 

  159. Li Y, Jiang S, Yang T (2017) Br/Cl, I/Cl and chlorine isotopic compositions of pore water in shallow sediments: implications for the fluid sources in the Dongsha area, northern South China Sea. Acta Oceanol Sin 36(4):31–36

    Article  CAS  Google Scholar 

  160. Coleman ML, Ader M, Chaudhuri S, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69(8):4997–5000

    Article  CAS  Google Scholar 

  161. Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista J, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77(23):7838–7842

    Article  CAS  Google Scholar 

  162. Bresler E (1973) Anion exclusion and coupling effects in nonsteady transport through unsaturated soils: I. theory 1. Soil Sci Soc Am J 37(5):663–669

    Article  CAS  Google Scholar 

  163. Sposito G (2008) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  164. Numata M, Nakamura N, Gamo T (2001) Precise measurement of chlorine stable isotopic ratios by thermal ionization mass spectrometry. Geochem J 35(2):89–100

    Article  CAS  Google Scholar 

  165. Lovett GM, Likens GE, Buso DC, Driscoll CT, Bailey SW (2005) The biogeochemistry of chlorine at Hubbard brook, New Hampshire, USA. Biogeochemistry 72(2):191–232

    Article  CAS  Google Scholar 

  166. Öberg G, Holm M, Sandén P, Svensson T, Parikka M (2005) The role of organic-matter-bound chlorine in the chlorine cycle: a case study of the Stubbetorp catchment, Sweden. Biogeochemistry 75(2):241–269

    Article  CAS  Google Scholar 

  167. Nodvin SC, Driscoll CT, Likens GE (1986) Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Sci 142(1):27–35

    Article  CAS  Google Scholar 

  168. Svensson T, Lovett GM, Likens GE (2012) Is chloride a conservative ion in forest ecosystems? Biogeochemistry 107(1):125–134

    Article  CAS  Google Scholar 

  169. Pillsbury AF (1981) The salinity of rivers. Sci Am 245(1):54–65

    Article  Google Scholar 

  170. Clark ID, Fritz P (2013) Environmental isotopes in hydrogeology. CRC Press, Boca Raton

    Book  Google Scholar 

  171. Hogan JF, Phillips FM, Mills SK, Hendrickx JM, Ruiz J, Chesley JT, Asmerom Y (2007) Geologic origins of salinization in a semi-arid river: the role of sedimentary basin brines. Geology 35(12):1063–1066

    Article  CAS  Google Scholar 

  172. Paul M, Kaufman A, Magaritz M, Fink D, Henning W, Kaim R, Kutschera W, Meirav O (1986) A new 36Cl hydrological model and 36Cl systematics in the Jordan River/Dead Sea system. Nature 321(6069):511–515

    Article  CAS  Google Scholar 

  173. Musashi M, Oi T, Kreulen R (2015) Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan: using B–Cl isotopes to interpret fluid sources. Isot Environ Health Stud 51(2):285–299

    Article  CAS  Google Scholar 

  174. Meriano M, Eyles N, Howard KW (2009) Hydrogeological impacts of road salt from Canada's busiest highway on a Lake Ontario watershed (Frenchman's Bay) and Lagoon, city of pickering. J Contam Hydrol 107(1–2):66–81

    Article  CAS  Google Scholar 

  175. Annable W, Frape S, Shouakar-Stash O, Shanoff T, Drimmie R, Harvey F (2007) 37Cl, 15N, 13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants. Appl Geochem 22(7):1530–1536

    Article  CAS  Google Scholar 

  176. Shouakar-Stash O, Frape SK, Drimmie RJ (2003) Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. J Contam Hydrol 60(3–4):211–228

    Article  CAS  Google Scholar 

  177. Beneteau K, Aravena R, Frape S (1999) Isotopic characterization of chlorinated solvents—laboratory and field results. Org Geochem 30(8):739–753

    Article  CAS  Google Scholar 

  178. Rosen JB (1999) Using stable chlorine isotopes and geochemistry to fingerprint anthropogenic salts in groundwater. University of Waterloo, Waterloo

    Google Scholar 

  179. Lake Huron lakewide action and management plan, 2017-2021 (2018) Environment and Climate Change Canada and the U.S. Environmental Protection Agency

    Google Scholar 

  180. Chapra SC, Dove A, Rockwell DC (2009) Great Lakes chloride trends: long-term mass balance and loading analysis. J Great Lakes Res 35:272–284

    Article  CAS  Google Scholar 

  181. Beeton AM (1965) Eutrophication of the St. Lawrence Great Lakes. Limnol Oceanogr 10(2):240–254

    Article  Google Scholar 

  182. O’connor DJ, Mueller JA (1970) A water quality model of chlorides in great lakes. J Sanit Eng Div 96(4):955–975

    Google Scholar 

  183. Roe HM, Patterson RT (2014) Arcellacea (testate amoebae) as bio-indicators of road salt contamination in lakes. Microb Ecol 68(2):299–313

    Article  CAS  Google Scholar 

  184. Wang Y (2017) Chlorine and bromine isotopic analyses of Groundwaters and Porewaters from the Bruce nuclear site. University of Waterloo, Waterloo

    Google Scholar 

  185. Skuce M, Longstaffe F, Carter T, Potter J (2015) Isotopic fingerprinting of groundwaters in southwestern Ontario: applications to abandoned well remediation. Appl Geochem 58:1–13

    Article  CAS  Google Scholar 

  186. Hatzinger PB, Boehlke JK, Izbicki J, Teague N, Sturchio NC (2015) Evaluation of perchlorate sources in the Rialto-Colton and Chino California subbasins using chlorine and oxygen isotope ratio analysis. Department of Defense Environmental Security Technology Certification Program. https://clu-in.org/download/contaminantfocus/perchlorate/Perchlorate-ER-200942-FR.pdf. Last accessed 26 May 2020

  187. Urbansky E, Brown S, Magnuson M, Kelty C (2001) Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ Pollut 112(3):299–302

    Article  CAS  Google Scholar 

  188. Kounaves SP, Stroble ST, Anderson RM, Moore Q, Catling DC, Douglas S, McKay CP, Ming DW, Smith PH, Tamppari LK (2010) Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environ Sci Technol 44(7):2360–2364

    Article  CAS  Google Scholar 

  189. Poghosyan A, Sturchio NC, Morrison CG, Beloso Jr AD, Guan Y, Eiler JM, Jackson WA, Hatzinger PB (2014) Perchlorate in the Great Lakes: isotopic composition and origin. Environ Sci Technol 48(19):11146–11153

    Article  CAS  Google Scholar 

  190. Scavia D, DePinto JV, Bertani I (2016) A multi-model approach to evaluating target phosphorus loads for Lake Erie. J Great Lakes Res 42(6):1139–1150

    Article  CAS  Google Scholar 

  191. Scavia D, Bocaniov SA, Dagnew A, Long C, Wang Y-C (2019) St. Clair-Detroit River system: phosphorus mass balance and implications for Lake Erie load reduction, monitoring, and climate change. J Great Lakes Res 45(1):40–49

    Article  CAS  Google Scholar 

  192. Bocaniov SA, Van Cappellen P, Scavia D (2019) On the role of a large shallow lake (Lake St. Clair, USA-Canada) in modulating phosphorus loads to Lake Erie. Water Resour Res 55(12):10548–10564

    Google Scholar 

  193. Hu Y, Long CM, Wang Y-C, Kerkez B, Scavia D (2019) Urban total phosphorus loads to the St. Clair-Detroit River system. J Great Lakes Res 45(6):1142–1149

    Article  CAS  Google Scholar 

  194. Dagnew A, Scavia D, Wang Y-C, Muenich R, Kalcic M (2019) Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. J Great Lakes Res 45(4):742–751

    Article  CAS  Google Scholar 

  195. Scavia D, Bocaniov SA, Dagnew A, Hu Y, Kerkez B, Long CM, Muenich RL, Read J, Vaccaro L, Wang Y-C (2019) Detroit River phosphorus loads: anatomy of a binational watershed. J Great Lakes Res 45(6):1150–1161

    Article  CAS  Google Scholar 

  196. Snow D (2018) Nitrate-N isotope results and interpretation. University of Nebraska Water Sciences Laboratory, Lincoln

    Google Scholar 

  197. Dolan DM, Chapra SC (2012) Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008). J Great Lakes Res 38(4):730–740

    Article  CAS  Google Scholar 

  198. Maccoux MJ, Dove A, Backus SM, Dolan DM (2016) Total and soluble reactive phosphorus loadings to Lake Erie: a detailed accounting by year, basin, country, and tributary. J Great Lakes Res 42(6):1151–1165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott O. C. Mundle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beaton, M.L., Mashhadi, N., Weidman, R.P., Dominato, K.R., Mundle, S.O.C. (2020). Geochemical Approaches to Improve Nutrient Source Tracking in the Great Lakes. In: Crossman, J., Weisener, C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, vol 101. Springer, Cham. https://doi.org/10.1007/698_2020_574

Download citation

Publish with us

Policies and ethics