Skip to main content

Pericytes: The Role of Multipotent Stem Cells in Vascular Maintenance and Regenerative Medicine

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 1

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1079))

Abstract

Blood vessels consist of an inner endothelial cell layer lining the vessel wall and perivascular pericytes, also known as mural cells, which envelop the vascular tube surface. Pericytes have recently been recognized for their central role in blood vessel formation. Pericytes are multipotent cells that are heterogeneous in their origin, function, morphology and surface markers. Similar to other types of stem cells, pericytes act as a repair system in response to injury by maintaining the structural integrity of blood vessels. Several studies have shown that blood vessels lacking pericytes become hyperdilated and haemorrhagic, leading to vascular complications ranging from diabetic retinopathy to embryonic death. The role of pericytes is not restricted to the formation and development of the vasculature: they have been shown to possess stem cell-like characteristics and may differentiate into cell types from different lineages. Recent discoveries regarding the contribution of pericytes to tumour metastasis and the maintenance of tumour vascular supply and angiogenesis have led researchers to propose targeting pericytes with anti-angiogenic therapies. In this review, we will examine the different physiological roles of pericytes, their differentiation potential, and how they interact with surrounding cells to ensure the integrity of blood vessel formation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO (2011) Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab 31(2):693–705

    Article  PubMed  Google Scholar 

  • Allt G, Lawrenson JG (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86(12):4544–4548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  PubMed  CAS  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561

    Article  PubMed  CAS  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215

    Article  PubMed  CAS  Google Scholar 

  • Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995

    Article  PubMed  CAS  Google Scholar 

  • Babitt JL, Lin HY (2012) Mechanisms of anemia in CKD. J Am Soc Nephrol 23(10):1631–1634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachmann S, Le Hir M, Eckardt KU (1993) Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41(3):335–341

    Article  CAS  PubMed  Google Scholar 

  • Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53(6):637–644

    Article  PubMed  CAS  Google Scholar 

  • Balabanov R, Washington R, Wagnerova J, Dore-Duffy P (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin alpha M, and macrophage marker ED-2. Microvasc Res 52(2):127–142

    Article  PubMed  CAS  Google Scholar 

  • Balabanov R, Beaumont T, Dore-Duffy P (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 55(5):578–587

    Article  PubMed  CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  PubMed  CAS  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7(4):452–464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15(4):215–228

    Article  PubMed  CAS  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014b) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchard BA, Shatos MA, Tracy PB (1997) Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler Thromb Vasc Biol 17(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X et al (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):229–230

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126(8):1631–1642

    CAS  PubMed  Google Scholar 

  • Chen S, Kulik M, Lechleider RJ (2003) Smad proteins regulate transcriptional induction of the SM22alpha gene by TGF-beta. Nucleic Acids Res 31(4):1302–1310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen CW, Montelatici E, Crisan M, Corselli M, Huard J, Lazzari L, Peault B (2009) Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 20(5–6):429–434

    Article  PubMed  CAS  Google Scholar 

  • Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K et al (2013) Human pericytes for ischemic heart repair. Stem Cells 31(2):305–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen WC, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Peault B (2015) Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33(2):557–573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668

    Article  PubMed  CAS  Google Scholar 

  • Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML (1998) Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60:267–286

    Article  PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  PubMed  CAS  Google Scholar 

  • Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI (1984) Pericyte endothelial gap junctions in human cerebral capillaries. Anat Embryol (Berl) 170(2):155–159

    Article  CAS  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299

    Article  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468(7323):562–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99

    Article  PubMed  Google Scholar 

  • DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80(4):444–451

    Article  CAS  PubMed  Google Scholar 

  • Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24(7):909–969

    CAS  PubMed  Google Scholar 

  • Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121(6):1845–1854

    PubMed  CAS  Google Scholar 

  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 1038(2):208–215

    Article  PubMed  CAS  Google Scholar 

  • Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14(16):1581–1593

    Article  PubMed  CAS  Google Scholar 

  • Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26(5):613–624

    Article  PubMed  CAS  Google Scholar 

  • Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18(8):1262–1270

    Article  PubMed  CAS  Google Scholar 

  • Eliasberg CD, Dar A, Jensen AR, Murray IR, Hardy WR, Kowalski TJ, Garagozlo CA, Natsuhara KM, Khan AZ, McBride OJ et al (2017) Perivascular stem cells diminish muscle atrophy following massive rotator cuff tears in a small animal model. J Bone Joint Surg Am 99(4):331–341

    Article  PubMed  Google Scholar 

  • Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17(3):380–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etchevers HC, Couly G, Le Douarin NM (2002) Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med 12(7):299–304

    Article  PubMed  Google Scholar 

  • Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE (2004) Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110(15):2226–2232.

    Article  CAS  PubMed  Google Scholar 

  • Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40(3 Suppl):S13–S15

    Article  CAS  PubMed  Google Scholar 

  • Foster K, Sheridan J, Veiga-Fernandes H, Roderick K, Pachnis V, Adams R, Blackburn C, Kioussis D, Coles M (2008) Contribution of neural crest-derived cells in the embryonic and adult thymus. J Immunol 180(5):3183–3189

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL, Arthur MJ (1989) Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest 84(6):1780–1785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  PubMed  Google Scholar 

  • Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218(3):472–479

    Article  CAS  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart CE, Forstrom JW, Kelly JD, Seifert RA, Smith RA, Ross R, Murray MJ, Bowen-Pope DF (1988) Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240(4858):1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123(1–3):77–83

    Article  CAS  PubMed  Google Scholar 

  • He W, Nieponice A, Soletti L, Hong Y, Gharaibeh B, Crisan M, Usas A, Peault B, Huard J, Wagner WR et al (2010) Pericyte-based human tissue engineered vascular grafts. Biomaterials 31(32):8235–8244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    CAS  PubMed  Google Scholar 

  • Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann M, Bara JJ, Sprecher CM, Menzel U, Jalowiec JM, Osinga R, Scherberich A, Alini M, Verrier S (2016) Pericyte plasticity – comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cell Mater 31:236–249

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, D’Amore PA (1996) Pericytes in the micro-vasculature. Cardiovasc Res 32(4):687–698.

    Article  CAS  PubMed  Google Scholar 

  • Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, Schnapp LM, Liles WC, Duffield JS et al (2017) Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol 312(4):L556–L567

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishitsuka K, Ago T, Arimura K, Nakamura K, Tokami H, Makihara N, Kuroda J, Kamouchi M, Kitazono T (2012) Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection. Microvasc Res 83(3):352–359

    Article  CAS  PubMed  Google Scholar 

  • Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation 11:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung KH, Chu K, Lee ST, Bahn JJ, Jeon D, Kim JH, Kim S, Won CH, Kim M, Lee SK et al (2011) Multipotent PDGFRbeta-expressing cells in the circulation of stroke patients. Neurobiol Dis 41(2):489–497

    Article  PubMed  CAS  Google Scholar 

  • Kamouchi M, Ago T, Kitazono T (2011) Brain pericytes: emerging concepts and functional roles in brain homeostasis. Cell Mol Neurobiol 31(2):175–193

    Article  PubMed  Google Scholar 

  • Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A et al (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11(4):471–476

    Article  PubMed  CAS  Google Scholar 

  • Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP et al (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109(8):894–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kida Y, Duffield JS (2011) Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol 38(7):467–473

    Article  PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Kim JA, Tran ND, Li Z, Yang F, Zhou W, Fisher MJ (2006) Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 26(2):209–217

    Article  PubMed  CAS  Google Scholar 

  • Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE (2007) Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res 101(6):581–589

    Article  PubMed  CAS  Google Scholar 

  • Knittel T, Dinter C, Kobold D, Neubauer K, Mehde M, Eichhorst S, Ramadori G (1999) Expression and regulation of cell adhesion molecules by hepatic stellate cells (HSC) of rat liver: involvement of HSC in recruitment of inflammatory cells during hepatic tissue repair. Am J Pathol 154(1):153–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konig MA, Canepa DD, Cadosch D, Casanova E, Heinzelmann M, Rittirsch D, Plecko M, Hemmi S, Simmen HP, Cinelli P et al (2016) Direct transplantation of native pericytes from adipose tissue: a new perspective to stimulate healing in critical size bone defects. Cytotherapy 18(1):41–52

    Article  PubMed  Google Scholar 

  • Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88

    Article  PubMed  Google Scholar 

  • Kristensson K, Olsson Y (1973) Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol Scand 49(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58(1):1–10

    Article  PubMed  Google Scholar 

  • Kutcher ME, Herman IM (2009) The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 77(3):235–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lan Y, Liu B, Yao H, Li F, Weng T, Yang G, Li W, Cheng X, Mao N, Yang X (2007) Essential role of endothelial Smad4 in vascular remodeling and integrity. Mol Cell Biol 27(21):7683–7692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson DM, Carson MP, Haudenschild CC (1987) Junctional transfer of small molecules in cultured bovine brain microvascular endothelial cells and pericytes. Microvasc Res 34(2):184–199

    Article  PubMed  CAS  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P, Xu X, ten Dijke P, Mummery CL, Karlsson S (2001) Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20(7):1663–1673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lauvrud AT, Kelk P, Wiberg M, Kingham PJ (2017) Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties. J Tissue Eng Regen Med 11(9):2490–2502

    Article  PubMed  CAS  Google Scholar 

  • Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Breant C, Mathivet T, Larrivee B, Thomas JL et al (2010) Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 16(4):420–428

    Article  PubMed  CAS  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8(16):1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284(5419):1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang YP, Kirsner RS (2003) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  • Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258

    Article  CAS  PubMed  Google Scholar 

  • Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3):365–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57(5):609–621

    Article  CAS  PubMed  Google Scholar 

  • Marra F, Choudhury GG, Pinzani M, Abboud HE (1994) Regulation of platelet-derived growth factor secretion and gene expression in human liver fat-storing cells. Gastroenterology 107(4):1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44(5):1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Mendel TA, Clabough EB, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC, Seaman SA, Cronk SM, Rakoczy EP, Katz AJ et al (2013) Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One 8(5):e65691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174(2):221–232

    Article  PubMed  CAS  Google Scholar 

  • Miller FN, Sims DE, Schuschke DA, Abney DL (1992) Differentiation of light-dye effects in the microcirculation. Microvasc Res 44(2):166–184

    Article  PubMed  CAS  Google Scholar 

  • Mills SJ, Cowin AJ, Kaur P (2013) Pericytes, mesenchymal stem cells and the wound healing process. Cells 2(3):621–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3(3):265–278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohle R, Green D, Moore MA, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94(2):663–668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montiel-Eulefi E, Nery AA, Rodrigues LC, Sanchez R, Romero F, Ulrich H (2012) Neural differentiation of rat aorta pericyte cells. Cytometry A 81(1):65–71

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27(6):687–694

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Kamouchi M, Kitazono T, Kuroda J, Matsuo R, Hagiwara N, Ishikawa E, Ooboshi H, Ibayashi S, Iida M (2008) Role of NHE1 in calcium signaling and cell proliferation in human CNS pericytes. Am J Physiol Heart Circ Physiol 294(4):H1700–H1707

    Article  PubMed  CAS  Google Scholar 

  • Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 113(1):147–154

    Article  PubMed  CAS  Google Scholar 

  • Obara N, Suzuki N, Kim K, Nagasawa T, Imagawa S, Yamamoto M (2008) Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111(10):5223–5232

    Article  PubMed  CAS  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97(6):2626–2631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson LE, Soriano P (2011) PDGFRbeta signaling regulates mural cell plasticity and inhibits fat development. Dev Cell 20(6):815–826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oshima M, Oshima H, Taketo MM (1996) TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179(1):297–302

    Article  PubMed  CAS  Google Scholar 

  • Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318

    Article  PubMed  CAS  Google Scholar 

  • Paquet-Fifield S, Schluter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, Pouliot N, Palatsides M, Ellis S et al (2009) A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Invest 119(9):2795–2806

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park TS, Gavina M, Chen CW, Sun B, Teng PN, Huard J, Deasy BM, Zimmerlin L, Peault B (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20(3):451–463

    Article  PubMed  CAS  Google Scholar 

  • Popescu FC, Busuioc CJ, Mogosanu GD, Pop OT, Parvanescu H, Lascar I, Nicolae CI, Mogoanta L (2011) Pericytes and myofibroblasts reaction in experimental thermal third degree skin burns. Romanian J Morphol Embryol 52(3 Suppl):1011–1017

    Google Scholar 

  • Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209(6):1219–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci U S A 105(43):16626–16630

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7):2084–2086

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar VS, Shiwen X, Bostrom M, Leoni P, Muddle J, Ivarsson M, Gerdin B, Denton CP, Bou-Gharios G, Black CM et al (2006) Platelet-derived growth factor-beta receptor activation is essential for fibroblast and pericyte recruitment during cutaneous wound healing. Am J Pathol 169(6):2254–2265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Risau W, Engelhardt B, Wekerle H (1990) Immune function of the blood-brain barrier: incomplete presentation of protein (auto-)antigens by rat brain microvascular endothelium in vitro. J Cell Biol 110(5):1757–1766

    Article  PubMed  CAS  Google Scholar 

  • Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51(5):363–369

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109(1):309–315

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Suzuki S, Senoo H (2003) Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct 28(2):105–112

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(3):289–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M et al (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217(2):388–399

    Article  PubMed  CAS  Google Scholar 

  • Sims DE (1986) The pericyte–a review. Tissue Cell 18(2):153–174

    Article  PubMed  CAS  Google Scholar 

  • Sims DE (1991) Recent advances in pericyte biology–implications for health and disease. Can J Cardiol 7(10):431–443

    CAS  PubMed  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846.

    Article  CAS  PubMed  Google Scholar 

  • Sims DE, Miller FN, Horne MM, Edwards MJ (1994) Interleukin-2 alters the positions of capillary and venule pericytes in rat cremaster muscle. J Submicrosc Cytol Pathol 26(4):507–513

    CAS  PubMed  Google Scholar 

  • Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8(16):1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Suematsu M, Aiso S (2001) Professor Toshio Ito: a clairvoyant in pericyte biology. Keio J Med 50(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Ljungstrom M, Lindmark G, Gerdin B, Rubin K (1993) Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol 143(5):1377–1388

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Rev 31(1):42–57

    Article  CAS  PubMed  Google Scholar 

  • Tilton RG, Kilo C, Williamson JR (1979) Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res 18(3):325–335

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  CAS  PubMed  Google Scholar 

  • Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, Lin F (2011) Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 52(12):9005–9010

    Article  PubMed  PubMed Central  Google Scholar 

  • Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331

    Article  CAS  PubMed  Google Scholar 

  • Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM (1995) T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J Immunol 154(11):5876–5884

    PubMed  Google Scholar 

  • Verbeek MM, de Waal RM, Schipper JJ, Van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid beta protein. J Neurochem 68(3):1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203(6):1519–1532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Cao C, Chen Z, Bankaitis V, Tzima E, Sheibani N, Burridge K (2012) Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation. PLoS One 7(9):e45499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276(1):43–57

    Article  CAS  PubMed  Google Scholar 

  • Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328

    Article  CAS  PubMed  Google Scholar 

  • Wong L, Yamasaki G, Johnson RJ, Friedman SL (1994) Induction of beta-platelet-derived growth factor receptor in rat hepatic lipocytes during cellular activation in vivo and in culture. J Clin Invest 94(4):1563–1569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamashima T, Tonchev AB, Vachkov IH, Popivanova BK, Seki T, Sawamoto K, Okano H (2004) Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia. Hippocampus 14(7):861–875

    Article  PubMed  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    Article  CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M, Liu PP, Deng CX (1999) Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126(8):1571–1580

    PubMed  CAS  Google Scholar 

  • Zhang X, Peault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z et al (2011) The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A 17(19–20):2497–2509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa El-Badri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, T.A., El-Badri, N. (2017). Pericytes: The Role of Multipotent Stem Cells in Vascular Maintenance and Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 1. Advances in Experimental Medicine and Biology(), vol 1079. Springer, Cham. https://doi.org/10.1007/5584_2017_138

Download citation

Publish with us

Policies and ethics