Skip to main content

In Vivo Target Validation Using Biological Molecules in Drug Development

  • Chapter
New Approaches to Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 232))

Abstract

Drug development is a resource-intensive process requiring significant financial and time investment. Preclinical target validation studies and in vivo testing of the therapeutic molecules in clinically relevant disease models can accelerate and significantly de-risk later stage clinical development. In this chapter, we will focus on (1) in vivo animal models and (2) pharmacological tools for target validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahou WF, Bowie EJ, Fass DN, Ginsburg D (1988) Molecular genetic analysis of porcine von Willebrand disease: tight linkage to the von Willebrand factor locus. Blood 72:308–313

    CAS  PubMed  Google Scholar 

  • Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH Jr (1995) Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10:119–121

    Article  CAS  PubMed  Google Scholar 

  • Bogue MA, Grubb SC (2004) The mouse phenome project. Genetica 122:71–74

    Article  CAS  PubMed  Google Scholar 

  • Booth CJ, Brooks MB, Rockwell S et al (2010a) WAG-F8(m1Ycb) rats harboring a factor VIII gene mutation provide a new animal model for hemophilia A. J Thromb Haemost 8:2472–2477

    Article  CAS  PubMed  Google Scholar 

  • Booth CJ, Brooks MB, Rockwell S (2010b) Spontaneous coagulopathy in inbred WAG/RijYcb rats. Comp Med 60:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkhous KM, Graham JB (1950) Hemophilia in the female dog. Science 111:723–724

    Article  CAS  PubMed  Google Scholar 

  • Brooks AR, Sim D, Gritzan U et al (2013) Glycoengineered factor IX variants with improved pharmacokinetics and subcutaneous efficacy. J Thromb Haemost 11:1699–1706

    Article  CAS  PubMed  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Cook N, Jodrell DI, Tuveson DA (2012) Predictive in vivo animal models and translation to clinical trials. Drug Discov Today 17:253–260

    Article  PubMed  Google Scholar 

  • Crudele JM, Finn JD, Siner JI et al (2015) AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood 125:1553–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denis C, Methia N, Frenette PS et al (1998) A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 95:9524–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    Article  CAS  PubMed  Google Scholar 

  • Dumont JA, Liu T, Low SC et al (2012) Prolonged activity of a recombinant factor VIII-Fc fusion protein in hemophilia A mice and dogs. Blood 119:3024–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elm T, Karpf DM, Ovlisen K et al (2012) Pharmacokinetics and pharmacodynamics of a new recombinant FVIII (N8) in haemophilia A mice. Haemophilia 18:139–145

    Article  CAS  PubMed  Google Scholar 

  • Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA (1989) Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci U S A 86:10095–10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fass DN, Bowie EJ, Owen CA Jr, Zollman PE (1979) Inheritance of porcine von Willebrand’s disease: study of a kindred of over 700 pigs. Blood 53:712–719

    CAS  PubMed  Google Scholar 

  • Felix MA, Braendle C (2010) The natural history of Caenorhabditis elegans. Curr Biol 20:050

    Article  Google Scholar 

  • Furth PA, St Onge L, Boger H et al (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91:9302–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza JC, Kim CS, Liu J, Zhang W, Lu XY (2008) Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity. J Endocrinol 197:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles AR, Tinlin S, Greenwood R (1982) A canine model of hemophilic (factor VIII:C deficiency) bleeding. Blood 60:727–730

    CAS  PubMed  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JB, Buckwalter JA et al (1949) Canine hemophilia; observations on the course, the clotting anomaly, and the effect of blood transfusions. J Exp Med 90:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20:2857–2859

    Article  CAS  PubMed  Google Scholar 

  • Grubb SC, Bult CJ, Bogue MA (2014) Mouse phenome database. Nucleic Acids Res 42:D825–D834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberichter SL, Merricks EP, Fahs SA, Christopherson PA, Nichols TC, Montgomery RR (2005) Re-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells. Blood 105:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  • Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh CS, Macatonia SE, O’Garra A, Murphy KM (1995) T cell genetic background determines default T helper phenotype development in vitro. J Exp Med 181:713–721

    Article  CAS  PubMed  Google Scholar 

  • Kashiwakura Y, Mimuro J, Onishi A et al (2012) Porcine model of hemophilia A. PLoS One 7:28

    Article  Google Scholar 

  • Kirienko NV, Mani K, Fay DS (2010) Cancer models in Caenorhabditis elegans. Dev Dyn 239:1413–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kistner A, Gossen M, Zimmermann F et al (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A 93:10933–10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koller BH, Hagemann LJ, Doetschman T et al (1989) Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A 86:8927–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucherlapati R (2012) Genetically modified mouse models for biomarker discovery and preclinical drug testing. Clin Cancer Res 18:625–630

    Article  CAS  PubMed  Google Scholar 

  • Leong L, Sim D, Patel C et al (2015) Noncovalent stabilization of the factor VIII A2 domain enhances efficacy in hemophilia A mouse vascular injury models. Blood 125:392–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250:94–103

    Article  CAS  PubMed  Google Scholar 

  • Li TT, Larrucea S, Souza S et al (2004) Genetic variation responsible for mouse strain differences in integrin alpha 2 expression is associated with altered platelet responses to collagen. Blood 103:3396–3402

    Article  CAS  PubMed  Google Scholar 

  • Lin HF, Maeda N, Smithies O, Straight DL, Stafford DW (1997) A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90:3962–3966

    CAS  PubMed  Google Scholar 

  • Lin CN, Kao CY, Miao CH et al (2010) Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. J Thromb Haemost 8:1773–1783

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Leach SD (2011) Zebrafish models for cancer. Annu Rev Pathol 6:71–93

    Article  CAS  PubMed  Google Scholar 

  • Mauser AE, Whitlark J, Whitney KM, Lothrop CD Jr (1996) A deletion mutation causes hemophilia B in Lhasa Apso dogs. Blood 88:3451–3455

    CAS  PubMed  Google Scholar 

  • McIntosh J, Lenting PJ, Rosales C et al (2013) Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 121:3335–3344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei B, Pan C, Jiang H et al (2010) Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia A treatment. Blood 116:270–279

    Article  CAS  PubMed  Google Scholar 

  • Menoret S, Fontaniere S, Jantz D et al (2013) Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J 27:703–711

    Article  CAS  PubMed  Google Scholar 

  • Metzner HJ, Weimer T, Kronthaler U, Lang W, Schulte S (2009) Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost 102:634–644

    CAS  PubMed  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Mustard JF, Rowsell HC, Robinson GA, Hoeksema TD, Downie HG (1960) Canine haemophilia B (Christmas disease). Br J Haematol 6:259–266

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander S, Kissling-Albrecht L, Heiniger J, Backfisch W, Stranzinger G, Pliska V (1992) Inherited defect of blood clotting factor VIII (haemophilia A) in sheep. Thromb Haemost 68:618–620

    CAS  PubMed  Google Scholar 

  • Novoa B, Figueras A (2012) Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 946:253–275

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard H, Bjelke JR, Hansen L et al (2011) Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood 118:2333–2341

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastoft AE, Lykkesfeldt J, Ezban M, Tranholm M, Whinna HC, Lauritzen B (2012) A sensitive venous bleeding model in haemophilia A mice: effects of two recombinant FVIII products (N8 and Advate((R))). Haemophilia 18:782–788

    Article  CAS  PubMed  Google Scholar 

  • Pastoft AE, Ezban M, Tranholm M, Lykkesfeldt J, Lauritzen B (2013) Prolonged effect of a new O-glycoPEGylated FVIII (N8-GP) in a murine saphenous vein bleeding model. Haemophilia 19:913–919

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Straubinger RM, Balu-Iyer SV (2010) Phosphatidylinositol containing lipidic particles reduces immunogenicity and catabolism of factor VIII in hemophilia a mice. AAPS J 12:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters RT, Low SC, Kamphaus GD et al (2010) Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood 115:2057–2064

    Article  CAS  PubMed  Google Scholar 

  • Platt RJ, Chen S, Zhou Y et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porada CD, Sanada C, Long CR et al (2010) Clinical and molecular characterization of a re-established line of sheep exhibiting hemophilia A. J Thromb Haemost 8:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinson DA, Dillon CP, Kwiatkowski AV et al (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33:401–406

    Article  CAS  PubMed  Google Scholar 

  • Scott P, Natovitz P, Coffman RL, Pearce E, Sher A (1988) Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 168:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83:13–34

    Article  PubMed  Google Scholar 

  • Stennicke HR, Kjalke M, Karpf DM et al (2013) A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 121:2108–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart D, Fulton WB, Wilson C et al (2002) Genetic contribution to the septic response in a mouse model. Shock 18:342–347

    Article  PubMed  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97:1559–1566, discussion 1549

    Article  CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Meissner A, Dillon CP et al (2004) Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A 101:10380–10385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee KF, Verma IM (1997) A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci U S A 94:11563–11566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek S. Sim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sim, D.S., Kauser, K. (2015). In Vivo Target Validation Using Biological Molecules in Drug Development. In: Nielsch, U., Fuhrmann, U., Jaroch, S. (eds) New Approaches to Drug Discovery. Handbook of Experimental Pharmacology, vol 232. Springer, Cham. https://doi.org/10.1007/164_2015_17

Download citation

Publish with us

Policies and ethics