Skip to main content

Arf and Phospholipids

  • Chapter
ARF Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 1))

Abstract

Arfs have been implicated in remodeling of both biological membranes and the actin cytoskeleton. In each case, Arf function appears to be integrally related to lipid metabolism. As regulators of membrane traffic, Arfs bind to membrane surfaces and affect membrane structure. Effects of Arf on the actin cytoskeleton may be mediated through acid phospholipids. Examination of the interactions of Arfs and lipids has revealed complex relationships. Arfs directly bind lipids. Arfs also bind and activate two enzymes that metabolize lipids, phospholipase D and phosphatidylinositol 4-phosphate 5-kinase. The products of these enzymes, phosphatidic acid and phosphatidylinositol 4,5-bisphosphate, affect both positive and negative regulators of Arfs. Although precise mechanisms have yet to be defined, regulation of the concentrations of these signaling lipids appears to mediate at least some effects of Arfs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoe, T., Huber, I., Vasudevan, C., Watkins, S. C., Romero, G., Cassel, D., and Hsu, V. W. (1999). The KDEL receptor regulates a GTPase-activating protein for ADP-ribosylation factor 1 by interacting with its non-catalytic domain. J. Biol. Chem., 274, 20545–20549.

    Article  CAS  PubMed  Google Scholar 

  • Amor, J. C., Harrison, D. H., Kahn, R. A., and Ringe, D. (1994). Structure of the human ADP-ribosylation factor-1 complexed with GDP. Nature, 372, 704–708.

    CAS  PubMed  Google Scholar 

  • Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J., and Loijens, J. C. (1999). Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem., 274, 9907–9910.

    CAS  PubMed  Google Scholar 

  • Andreev, J., Simon, J. P., Sabatini, D. D., Kam, J., Plowman, G., Randazzo, P. A., and Schlessinger, J. (1999). Identification of a new Pyk2 target protein with Arf-GAP activity. Mol. Cell. Biol., 19, 2338–2350.

    CAS  PubMed  Google Scholar 

  • Antonny, B., Beraud-Dufour, S., Chardin, P., and Chabre, M. (1997a). N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry, 36, 4675–4684.

    Article  CAS  PubMed  Google Scholar 

  • Antonny, B., Huber, I., Paris, S., Chabre, M., and Cassel, D. (1997b). Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem., 272, 30848–30851.

    Article  CAS  PubMed  Google Scholar 

  • Bagrodia, S., Bailey, D., Lenard, Z., Hart, M., Guan, J., Premont, R., Taylor, S., and Cerione, R. (1999). A tyrosine-phosphorylated protein that binds to an important regulatory region on the Cool family of p21-activated kinase-binding proteins. J. Biol. Chem., 274, 22393–22400.

    Article  CAS  PubMed  Google Scholar 

  • Bankaitis, V. A., Malehorn, D. E., Emr, S. D., and Greene, R. (1989). The Saccharomyces-cerevisiae Sec 14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol., 108, 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  • Beraud-Dufour, S., Paris, S., Chabre, M., and Antonny, B. (1999). Dual interaction of ADP ribosylation factor 1 with Sec7 domain and with lipid membranes during catalysis of guanine nucleotide exchange. J. Biol. Chem., 274, 37629–37636.

    Article  CAS  PubMed  Google Scholar 

  • Bourgoin, S. G., Houle, M. G., Singh, I. N., Harbour, D., Gagnon, S., Morris, A. J., and Brindley, D. N. (2002). ARNO but not Cytohesin-1 translocation is phosphatidylinositol 3-kinase-dependent in HL-60 cells. J. Leuk. Biol., 71, 718–728.

    CAS  Google Scholar 

  • Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T., and Donaldson, J. G. (2001). Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol., 154, 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A., and Randazzo, P. A. (1998). ASAP1, a phospholipid-dependent Arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol., 18, 7038–7051.

    CAS  PubMed  Google Scholar 

  • Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C. L., and Chabre, M. (1996). A human exchange factor for Arf contains Sec7-and pleckstrin-homology domains. Nature, 384, 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., and Schwartz, M. A. (1994). The small GTP-binding protein-Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian-cells. Cell, 79, 507–513.

    Article  CAS  PubMed  Google Scholar 

  • Cremona, O. and De Camilli, P. (2001). Phosphoinositides in membrane traffic at the synapse. J. Cell Sci., 114, 1041–1052.

    CAS  PubMed  Google Scholar 

  • Cukierman, E., Huber, I., Rotman, M., and Cassel, D. (1995). The Arf1 GTPase-activating protein — zinc-finger motif and Golgi-complex localization. Science, 270, 1999–2002.

    CAS  PubMed  Google Scholar 

  • DelľAngelica, E. C., Puertollano, R., Mullins, C., Aguilar, R. C., Vargas, J. D., Hartnell, L. M., and Bonifacino, J. S. (2000). Ggas: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol., 149, 81–93.

    Google Scholar 

  • Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D. (1992). ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein β-COP to Golgi membranes. Proc. Nat. Acad. Sci., USA, 89, 6408–6412.

    CAS  Google Scholar 

  • Exton, J. H. (1999). Regulation of phospholipase D. Biochim. Biophys. Acta, 1439, 121–133.

    CAS  PubMed  Google Scholar 

  • Franco, M., Chardin, P., Chabre, M., and Paris, S. (1993). Myristoylation is not required for GTP-dependent binding of ADP-ribosylation factor-Arf1 to phospholipids. J. Biol. Chem., 268, 24531–24534.

    CAS  PubMed  Google Scholar 

  • Franco, M., Chardin, P., Chabre, M., and Paris, S. (1995). Myristoylation of ADP-ribosylation factor-1 facilitates nucleotide exchange at physiological Mg2+ levels. J. Biol. Chem., 270, 1337–1341.

    CAS  PubMed  Google Scholar 

  • Franco, M., Chardin, P., Chabre, M., and Paris, S. (1996). Myristoylation-facilitated binding of the G protein ARF1(GDP) to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J. Biol. Chem., 271, 1573–1578.

    CAS  PubMed  Google Scholar 

  • Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., D’Souza-Schorey, C., and Chavrier, P. (1999). EFA6, a Sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J., 18, 1480–1491.

    Article  CAS  PubMed  Google Scholar 

  • Frohman, M. A., Sung, T. C., and Morris, A. J. (1999). Mammalian phospholipase D structure and regulation. Biochim. Biophys. Acta, 1439, 175–186.

    CAS  PubMed  Google Scholar 

  • Gillooly, D. J., Simonsen, A., and Stenmark, H. (2001). Phosphoinositides and phagocytosis. J. Cell Biol., 155, 15–17.

    Article  CAS  PubMed  Google Scholar 

  • Godi, A., Santone, I., Pertile, P., Marra, P., Di Tullio, G., Luini, A., Corda, D., and De Matteis, M. A. (1999). ADP-ribosylation factor regulates spectrin skeleton assembly on the Golgi complex by stimulating phosphatidylinositol 4,5-bisphosphate synthesis. Biochem. Soc. Trans., 27, 638–642.

    CAS  PubMed  Google Scholar 

  • Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell, 96, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Greasley, S. E., Jhoti, H., Teahan, C., Solari, R., Fensome, A., Thomas, G. M. H., Cockcroft, S., and Bax, B. (1995). The structure of rat ADP-ribosylation-factor-I (Arf-1) complexed to GDP determined from 2 different crystal forms. Nature Struct. Biol., 2, 797–806.

    Article  CAS  PubMed  Google Scholar 

  • Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A., and Kanaho, Y. (1999). Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 99, 521–532.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J. X., Haun, R. S., Tsai, S. C., Moss, J., and Vaughan, M. (1994). Effect of ADP-ribosylation factor amino-terminal deletions on its GTP-dependent stimulation of choleratoxin activity. J. Biol. Chem., 269, 16519–16524.

    CAS  Google Scholar 

  • Hong, J. X., Zhang, X. K., Moss, J., and Vaughan, M. (1995). Isolation of an amino-terminal deleted recombinant ADP-ribosylation factor-1 in an activated nucleotide-free state. Proc. Nat. Acad. Sci., USA, 92, 3056–3059.

    CAS  Google Scholar 

  • Jackson, C. L. and Casanova, J. E. (2000). Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol., 10, 60–67.

    CAS  PubMed  Google Scholar 

  • Jackson, T. R., Brown, F. D., Nie, Z. Z., Miura, K., Foroni, L., Sun, J. L., Hsu, V. W., Donaldson, J. G., and Randazzo, P. A. (2000). ACAPs are Arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol., 151, 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Jacques, K. M., Nie, Z., Stauffer, S., Hirsch, D. S., Chen, L.-X., Stanley, K. T., and Randazzo, P. A. (2002). Arf1 dissociates from the clathrin adaptor GGA prior to being inactivated by Arf GTPase-activating proteins. J. Biol. Chem., 277, 47235–47241.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. H., Bax, B., Fensome, A., and Cockcroft, S. (1999). ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I. Biochem. J., 341, 185–192.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. H., Morris, J. B., Morgen, C. P., Kondo, H., Irvine, R. F., and Cockcroft, S. (2000). Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the Golgi compartment. J. Biol. Chem., 275, 13962–13966.

    CAS  PubMed  Google Scholar 

  • Kahn, R. A. and Gilman, A. G. (1984). Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem., 259, 6228–6234.

    CAS  PubMed  Google Scholar 

  • Kahn, R. A. and Gilman, A. G. (1986). The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem., 261, 7906–7911.

    CAS  PubMed  Google Scholar 

  • Kam, J. L., Miura, K., Jackson, T. R., Gruschus, J., Roller, P., Stauffer, S., Clark, J., Aneja, R., and Randazzo, P. A. (2000). Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1 — evidence for the pleckstrin homology domain functioning as an allosteric site. J. Biol. Chem., 275, 9653–9663.

    Article  CAS  PubMed  Google Scholar 

  • Klarlund, J. K., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997). Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science, 275, 1927–1930.

    Article  CAS  PubMed  Google Scholar 

  • Klarlund, J. K., Rameh, L. E., Cantley, L. C., Buxton, J. M., Holik, J. J., Sakelis, C., Patki, V., Corvera, S., and Czech, M. P. (1998). Regulation of GRP1-catalyzed ADP ribosylation factor guanine nucleotide exchange by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem., 273, 1859–1862.

    Article  CAS  PubMed  Google Scholar 

  • Klarlund, J. K., Tsiaras, W., Holik, J. J., Chawla, A., and Czech, M. P. (2000). Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J. Biol. Chem., 275, 32816–32821.

    Article  CAS  PubMed  Google Scholar 

  • Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., Davidson, K., Eguinoa, A., Ellson, C. D., Lipp, P., Manifava, M., Ktistakis, N., Painter, G., Thuring, J. W., Cooper, M. A., Lim, Z. Y., Holmes, A. B., Dove, S. K., Michell, R. H., Grewal, A., Nazarian, A., Erdjument-Bromage, H., Tempst, P., Stephens, L. R., and Hawkins, P. T. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell, 9, 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Lietzke, S. E., Bose, S., Cronin, T., Klarlund, J., Chawla, A., Czech, M. P., and Lambright, D. G. (2000). Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. Mol. Cell, 6, 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Liscovitch, M., Czarny, M., Fiucci, G., and Tang, X. Q. (2000). Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J., 345, 401–415.

    Article  CAS  PubMed  Google Scholar 

  • Lorra, C. and Huttner, W. B. (1999). The mesh hypothesis of Golgi dynamics. Nature Cell Biol., 1, E113–E115.

    Article  CAS  PubMed  Google Scholar 

  • Makler, V., Cukierman, E., Rotman, M., Admon, A., and Cassel, D. (1995). ADP-ribosylation factor-directed GTPase-activating protein — purification and partial characterization. J. Biol. Chem., 270, 5232–5237.

    CAS  PubMed  Google Scholar 

  • Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K. J., Hirsch, D. S., Resau, J., Zheng, Y., and Randazzo, P. A. (2002). ARAP1: A point of convergence for Arf and Rho signaling. Mol. Cell, 9, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Moss, J. and Vaughan, M. (2002). Cytohesin-1 in 2001. Arch.Biochem. Biophys., 397, 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Nie, Z., Stanley, K. T., Stauffer, S., Jacques, K. M., Hirsch, D. S., Takei, J., and Randazzo, P. A. (2002). AGAP1: an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPasae activating protein that affects actin cytoskeleton. J. Biol. Chem., 277, 48965–48975.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara, M., Kim, S. C., Adamik, R., Togawa, A., Ferrans, V. J., Takeda, K., Kirby, M., Moss, J., and Vaughan, M. (2000). Similarities in function and gene structure of Cytohesin-4 and Cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors. J. Biol. Chem., 275, 3221–3230.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, C. E., DelľAngelica, E. C., and Bonifacino, J. S. (1998). ADP-ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell Biol., 142, 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Orci, L., Palmer, D. J., Amherdt, M., and Rothman, J. E. (1993). Coated vesicle assembly in the Golgi requires only coatomer and Arf proteins from the Cytosol. Nature, 364, 732–734.

    Article  CAS  Google Scholar 

  • Osborne, S. L., Meunier, F. A., and Schiavo, G. (2001). Phosphoinositides as key regulators of synaptic function. Neuron, 32, 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J., and Vaughan, M. (1998). Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by Cytohesin-1 and its Sec7 domain. J. Biol. Chem., 273, 26543–26548.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, D. J., Helms, J. B., Beckers, C. J. M., Orci, L., and Rothman, J. E. (1993). Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem., 268, 12083–12089.

    CAS  PubMed  Google Scholar 

  • Paris, S., Antonny, B., Beraud-Dufour, S., Robineau, S., Chabre, M., and Chardin, P. (1997a). Arf1: interactions with phospholipids and activation by the human exchange factor ARNO. FASEB J., 11, 3425.

    Google Scholar 

  • Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., Chabre, M., and Chardin, P. (1997b). Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor ARNO. J. Biol. Chem., 272, 22221–22226.

    Article  CAS  PubMed  Google Scholar 

  • Payrastre, B., Missy, K., Giuriato, S., Bodin, S., Plantavid, M., and Gratacap, M. P. (2001). Phosphoinositides — key players in cell signaling, in time and space. Cell. Signal., 13, 377–387.

    Article  CAS  PubMed  Google Scholar 

  • Premont, R., Claing, A., Vitale, N., Freeman, J., Pitcher, J., Patton, W., Moss, J., Vaughan, M., and Lefkowitz, R. (1998). β2-Adrenergic Receptor Regulation By GIT1, A G Protein-Coupled Receptor Kinase-Associated ADP-Ribosylation Factor GTPase-Activating Protein. Proc. Nat. Acad. Sci., USA, 95, 14082–14087.

    Article  CAS  Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Perry, S. J., and Lefkowitz, R. J. (2000). The GIT family of ADP-ribosylation factor GTPase-activating proteins — functional diversity of GIT2 through alternative splicing. J. Biol. Chem., 275, 22373–22380.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo, P. A. (1997a). Functional interaction of ADP-ribosylation factor 1 with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem., 272, 7688–7692.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A. (1997b) Resolution of two ADP-ribosylation factor 1 GTPase-activating proteins from rat liver. Biochem. J., 324, 413–419.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A. and Kahn, R. A. (1994). GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospholipids. J. Biol. Chem., 269, 10758–10763.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A. and Kahn, R. A. (1995). Myristoylation and ADP-ribosylation factor function. Meth. Enzymol., 250, 394–405.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A., Nie, Z., Miura, K., and Hsu, V. W. (2000). Molecular aspects of the cellular activities of ADP-ribosylation factors. Science STKE., 2000, RE1.

    Google Scholar 

  • Randazzo, P. A., Terui, T., Sturch, S., Fales, H. M., Ferrige, A. G., and Kahn, R. A. (1995). The myristoylated amino-terminus of ADP-ribosylation factor-1 is a phospholipid-sensitive and GTP-sensitive switch. J. Biol. Chem., 270, 14809–14815.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A., Terui, T., Sturch, S., and Kahn, R. A. (1994). The amino-terminus of ADP-ribosylation factor (Arf)-1 is essential for interaction with Gs and Arf GTPase-activating protein. J. Biol. Chem., 269, 29490–29494.

    CAS  PubMed  Google Scholar 

  • Randazzo, P. A., Yang, Y. C., Rulka, C., and Kahn, R. A. (1993). Activation of ADP-ribosylation factor by Golgi membranes — evidence for a Brefeldin A-sensitive and protease-sensitive activating factor on Golgi membranes. J. Biol. Chem., 268, 9555–9563.

    CAS  PubMed  Google Scholar 

  • Rothman, J. E. (1994). Mechanism of intracellular protein-transport. Nature, 372, 55–63.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A. V., Witke, W., Huttner, W. B., and Soling, H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature, 401, 133–141.

    CAS  PubMed  Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles — a novel role for a GTP-binding protein. Cell, 67, 239–253.

    Article  CAS  PubMed  Google Scholar 

  • Simonsen, A., Wurmser, A. E., Emr, S. D., and Stenmark, H. (2001). The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol., 13, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Stamnes, M. A. and Rothman, J. E. (1993). The binding of AP-1 Clathrin adapter particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell, 73, 999–1005.

    Article  CAS  PubMed  Google Scholar 

  • Sternweis, P. C., Brown, H. A., Singer, W. D., Jiang, X., Faulkner, A., Wells, C., Roth, M. G., Ktistakis, N. T., and Bi, K. (1997). Regulation of phospholipase D and its role in membrane traffic. FASEB J., 11, 100.

    Google Scholar 

  • Takenawa, T. and Itoh, T. (2001). Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta, 1533, 190–206.

    CAS  PubMed  Google Scholar 

  • Terui, T., Kahn, R. A., and Randazzo, P. A. (1994). Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor-1 — evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem., 269, 28130–28135.

    CAS  PubMed  Google Scholar 

  • Thomas, G., Fensome, A., Whatmore, J., Geny, B., and Cockcroft, S. (1994). The regulation of phospholipase-D by Arfs. J. Neurochem., 63, S29.

    Google Scholar 

  • Traub, L. M., Ostrom, J. A., and Kornfeld, S. (1993). Biochemical dissection of AP-1 recruitment onto Golgi membranes. J. Cell Biol., 123, 561–573.

    Article  CAS  PubMed  Google Scholar 

  • Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., Bagrodia, S., Thomas, S., and Leventhal, P. S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-Kd Ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol., 145, 851–863.

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu, K., Gunn-Moore, F., Tavare, J. M., and Cullen, P. J. (1999). EGF-and NGF-stimulated translocation of Cytohesin-1 to the plasma membrane of PC12 cells requires PI 3-kinase activation and a functional cytohesin-1 PH domain. J. Cell Sci., 112, 1957–1965.

    CAS  PubMed  Google Scholar 

  • Venkateswarlu, K., Oatey, P. B., Tavare, J. M., and Cullen, P. J. (1998). Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol., 8, 463–466.

    Article  CAS  PubMed  Google Scholar 

  • Vitale, N., Patton, W. A., Moss, J., Vaughan, M., Lefkowitz, R. J., and Premont, R. T. (2000). GIT proteins, a novel family of phosphatidylinositol 3,4,5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem., 275, 13901–13906.

    CAS  PubMed  Google Scholar 

  • Weigert, R., Silletta, M. G., Spano, S., Turacchio, G., Cericola, C., Colanzi, A., Senatore, S., Mancini, R., Polishchuk, E. V., Salmona, M., Facchiano, F., Burger, K. N. J., Mironov, A., Luini, A., and Corda, D. (1999a). Ctbp/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature, 402, 429–433.

    CAS  PubMed  Google Scholar 

  • Weigert, R., Silletta, M. G., Spano, S., Turacchio, G., Cericola, C., Luini, A., and Corda, D. (2000). Fission of Golgi membranes is induced by Ctbp/BARS-induced acylation of lysophosphatidic acid. Biophys. J., 78, 1878.

    Google Scholar 

  • Weigert, R., Silletta, M. G., Turacchio, G., Spano, S., Burger, K. N. J., Corda, D., and Luini, A. (1999b). BARS is an acyl-transferase involved in Golgi membrane fission. Mol. Biol. Cell, 10, 25.

    Google Scholar 

  • Yanagisawa, L., Marchena, J., Xie, Z., Poon, P., Singer, R., Johnston, G., Randazzo, P., and Bankaitis, V. (2002). Activity PF specific lipid-regulated Arf GAPs is required for Sec14p-dependent Golgi secretory function in yeast. Mol. Biol. Cell., 13, 2193–2206

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z. S., Manser, E., Loo, T. H., and Lim, L. (2000). Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol., 20, 6354–6363.

    CAS  PubMed  Google Scholar 

  • Zhu, Y. X., Drake, M. T., and Kornfeld, S. (1999). ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes. Proc. Nat. Acad. Sci., USA, 96, 5013–5018.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Randazzo, P.A., Nie, Z., Hirsch, D.S. (2004). Arf and Phospholipids. In: ARF Family GTPases. Proteins and Cell Regulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2593-9_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2593-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1719-3

  • Online ISBN: 978-1-4020-2593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics