Skip to main content

The Role of Biomechanics in Analysis of Cardiovascular Diseases: Regulation of the Fluid Shear Response by Inflammatory Mediators

  • Chapter
Functional Tissue Engineering

Conclusion

Biomechanics at the level of individual cells, the microcirculation and the tissue is an effective tool to analyze important diseases such as stroke, myocardial infarction, or physiological shock. The biomechanics of inflammation needs to take center stage in the analysis of disease, organ rejection, or tissue engineering. There is a rich collection of problems that require analysis and finding solutions will be a rewarding exercise. The role of fluid shear stress in control of cells in the cardiovascular system is a major aspect of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando J, Kamiya A. 1996. Flow-dependent regulation of gene expression in vascular endothelial cells Jpn. Heart J. 37:19–32.

    CAS  Google Scholar 

  • Barakat AI. 1999. Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review) Int. J. Mol. Med. 4:323–332.

    CAS  Google Scholar 

  • Campbell FR. 1972. Ultrastructural studies of transmural migration of blood cells in the bone marrow of rats, mice and guinea pigs Am. J. Anat. 135: 521–535.

    CAS  Google Scholar 

  • Chamberlain JK, Lichtman MA. 1978. Marrow egress: specificity of the site of penetration into the sinus. Blood 52:959–968.

    PubMed  CAS  Google Scholar 

  • Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW. 1998. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium Circ. Res. 82:532–539.

    CAS  Google Scholar 

  • Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY. 1999. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. of Biol. Chem. 274: 18393–18400.

    CAS  Google Scholar 

  • Damiano ER, Westheider J, Tözeren A, Ley K. 1996. Variation in the velocity, deformation, and adhesion energy density of leukocytes rolling within venules. Circ. Res. 79:1122–1130.

    PubMed  CAS  Google Scholar 

  • Davies P. 1995. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560.

    PubMed  CAS  Google Scholar 

  • De Bruyn PP, Michelson S, Thomas TB. 1971. The migration of blood cells of the bone marrow through the sinusoidal wall. J. Morphol. 133: 417–437.

    PubMed  Google Scholar 

  • Del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang C-M. 1991. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion. Stroke 22:1276–1283.

    PubMed  Google Scholar 

  • Dong C, Cao J, Struble EJ, Lipowsky HH. 1999. Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann. Biomed. Eng. 27:298–312.

    Article  PubMed  CAS  Google Scholar 

  • Engler RL, Schmid-Schönbein GW, Pavelec RS. 1983. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am. J. Pathol. 111:98–111.

    PubMed  CAS  Google Scholar 

  • Entman ML, Michael L, Rossen RD, Dreyer WJ, Anderson DC, Taylor AA, Smith CW. 1991. Inflammation in the course of early myocardial ischemia. FASEB J. 5:2529–2537.

    PubMed  CAS  Google Scholar 

  • Farr AG, De Bruyn PP. 1975. The mode of lymphocyte migration through postcapillary venule endothelium in lymph node. Am. J. Anat. 143:59–92.

    Article  PubMed  CAS  Google Scholar 

  • Finger EB, Puri KD, Alon R, Lawrence MB, von Andrian UH, Springer TA. 1996. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266–269.

    Article  PubMed  CAS  Google Scholar 

  • Frangos JA, Huang TY, Clark CB. 1996. Steady shear and step changes in shear stimulate endothelium via independent mechanisms-superposition of transient and sustained nitric oxide production. Biochem. Biophys. Res. Comm. 224:660–665.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda S, Yasu T, Predescu DN, Schmid-Schönbein GW. 2000. Mechanisms for regulation of fluid shear stress response in circulating leukocytes. Circ. Res. 86:E13–18.

    PubMed  CAS  Google Scholar 

  • Fung YC. 1997. Biomechanics. Circulation. Springer-Verlag, New York.

    Google Scholar 

  • Gimbrone MA, Jr, Nagel T, Topper JN. 1997. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J. Clin. Invest. 99: 1809–1813.

    PubMed  CAS  Google Scholar 

  • Golledge J. 1997. Vein grafts: haemodynamic forces on the endothelium-a review. Eur. J. Vasc. Endovasc. Surg. 14:333–343.

    PubMed  CAS  Google Scholar 

  • Granger DN, Kubes P. 1994. The microcirculation and inflammation: modulation of leukocyteendothelial cell adhesion. J. Leukoc. Biol. 55:662–675.

    PubMed  CAS  Google Scholar 

  • Granger DN, Kubes P. 1996. Nitric oxide as antiinflammatory agent. Methods Enzymol. 269:434–442.

    PubMed  CAS  Google Scholar 

  • Granger ND, Schmid-Schönbein GW. 1995. Physiology and Pathophysiology of Leukocyte Adhesion. Oxford University Press, New York.

    Google Scholar 

  • Gute DC, Ishida T, Yarimizu K, Korthuis RJ. 1998. Inflammatory responses to ischemia and reperfusion in skeletal muscle. Mol. Cell. Biochem. 179:169–187.

    Article  PubMed  CAS  Google Scholar 

  • Hammersen F, Hammersen E. 1987. The ultrastructure of endothelial gap-formation and leukocyte emigration. Prog. Appl. Microcirc. 12:1–34.

    Google Scholar 

  • Harris AG, Skalak TC. 1993. Leukocyte cytoskeletal structure is a determinant of capillary plugging and flow resistance in skeletal muscle. Am. J. Physiol. 265:H1670–H1675.

    PubMed  CAS  Google Scholar 

  • Harris AG, Skalak TC, Hatchell DL. 1994. Leukocytecapillary plugging and network resistance are increased in skeletal muscle of rats with streptozotocin-induced hyperglycemia. Int. J. Microcirc. Clin. Exp. 14:159–166.

    PubMed  CAS  Google Scholar 

  • Hellberg C, Ydrenius L, Axelsson L, Andersson T. 1999. Disruption of beta(2)-integrin-cytoskeleton coupling abolishes the signaling capacity of these integrins on granulocytes. Biochem. Biophys. Res. Comm. 265:164–169.

    Article  PubMed  CAS  Google Scholar 

  • Ho E, Bray TM. 1999. Antioxidants, NFkappaB activation, and diabetogenesis. Proc. Soc. Exp. Biol. Med. 222:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Hughes BJ, Hollers JC, Crockett-Torabi E, Smith CW. 1992. Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion. J. Clin. Invest. 90:1687–1696.

    PubMed  CAS  Google Scholar 

  • Jones DA, Smith CW, McIntire LV. 1996. Leucocyte adhesion under flow conditions: principles important in tissue engineering. Biomaterials 17: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Kubes P, McCafferty DM. 2000. Nitric oxide and intestinal inflammation. Am. J. Med. 109:150–158.

    Article  PubMed  CAS  Google Scholar 

  • Lee E, Pang K, Knecht D. 2001. The regulation of actin polymerization and cross-linking in Dictyostelium. Biochim. Biophys. Acta 1525:217–227.

    PubMed  CAS  Google Scholar 

  • Lee JS. 2000. 1998. Distinguished lecture: biomechanics of the microcirculation, an integrative and therapeutic perspective. Ann. Biomed. Eng. 28:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ. 1998. Prevention of focal intimal hyperplasia in rat vein grafts by using a tissue engineering approach. Atherosclerosis 140:365–377.

    PubMed  CAS  Google Scholar 

  • Liu SQ. 1999. Biomechanical basis of vascular tissue engineering. Crit. Rev. Biomed. Eng. 27:75–148.

    PubMed  CAS  Google Scholar 

  • Liu SQ, Moore MM, Glucksberg MR, Mockros LF, Grotberg JB, Mok AP. 1999. Partial prevention of monocyte and granulocyte activation in experimental vein grafts by using a biomechanical engineering approach. J. Biomech. 32:1165–1175.

    PubMed  CAS  Google Scholar 

  • Lush CW, Kvietys PR. 2000. Microvascular dysfunction in sepsis. Microcirculation 7:83–101.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi VT, Florey HW. 1961. Electron micrographic observations on the emigration of leukocytes. Q. J. Exp. Physiol. 45:343–361.

    Google Scholar 

  • Marschel P. 1999. “The Influence of Integrins on the Leukocyte Response to Fluid Shear Stress.“ Master’s thesis, University of California San Diego.

    Google Scholar 

  • Mazzoni MC, Schmid-Schönbein GW. 1996. Mechanisms and consequences of cell activation in the microcirculation. Cardiovasc. Res. 32:709–719.

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Thurston G, Baluk P. 1999. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 6:7–22.

    Article  PubMed  CAS  Google Scholar 

  • Mitsuoka H, Kistler EB, Schmid-Schönbein GW. 2000. Generation of in vitro activating factors in the ischemic intestine by pancreatic enzymes. Proc. Natl. Acad. Sci. U.S.A. 97:1772–1777.

    Article  PubMed  CAS  Google Scholar 

  • Moazzam F, DeLano FA, Zweifach BW, Schmid-Schönbein GW. 1997. The leukocyte response to fluid stress [see comments]. Proc. Natl. Acad. Sci. U.S.A. 94:5338–5343.

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Mohan N, Valente AJ, Sprague EA. 1999. Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276:C1100–C1107.

    PubMed  CAS  Google Scholar 

  • Möhle R, Moore MA, Nachman RL, Rafii S. 1997. Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line. Blood 89:72–80.

    PubMed  Google Scholar 

  • Moore TM, Chetham PM, Kelly, JJ, Stevens T. 1998. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am. J. Physiol. 275:L203–L222.

    PubMed  CAS  Google Scholar 

  • Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni M, Remuzzi G, Remuzzi A. 1995. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 85:1696–1703.

    PubMed  CAS  Google Scholar 

  • Ohashi KL, Tung DK-L, Wilson JM, Zweifach BW, Schmid-Schönbein GW. 1996. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation 3:199–210.

    PubMed  CAS  Google Scholar 

  • Oparil S, Oberman A. 1999. Nontraditional cardiovascular risk factors. Am. J. Med. Sci. 317:193–207.

    PubMed  CAS  Google Scholar 

  • Ozer K, Adanali G, Zins J, Siemionow M. 1999. In vivo microscopic assessment of cremasteric microcirculation during hindlimb allograft rejection in rats. Plast. Reconstr. Surg. 103:1949–1956.

    PubMed  CAS  Google Scholar 

  • Papadaki M, Eskin SG, Ruef J, Runge MS, McIntire LV. 1999. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities. Diabetes Res. Clin. Pract. 45:89–99.

    Article  PubMed  CAS  Google Scholar 

  • Ray WJ, Ashall F, Goate AM. 1998. Molecular pathogenesis of sporadic and familial forms of Alzheimer’s disease. Mol. Med. Today 4:151–157.

    PubMed  CAS  Google Scholar 

  • Ritter LS, Wilson DS, Williams SK, Copeland JG, McDonagh PF. 1995. Early in reperfusion following myocardial ischemia, leukocyte activation is necessary for venular adhesion but not capillary retention. Microcirculation 2:315–327.

    PubMed  CAS  Google Scholar 

  • Robinson LA, Tu L, Steeber DA, Preis O, Platt JL, Tedder TF. 1998. The role of adhesion molecules in human leukocyte attachment to porcine vascular endothelium: implications for xenotransplantation. J. Immunol. 161:6931–6938.

    PubMed  CAS  Google Scholar 

  • Rodgers SD, Camphausen RT, Hammer DA. 2000. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys. J. 79:694–706.

    PubMed  CAS  Google Scholar 

  • Ross R. 1999. Atherosclerosis-an inflammatory disease [see comments]. N. Eng. J. Med. 340:115–126.

    CAS  Google Scholar 

  • Schleiffenbaum B, Moser R, Patarroyo M, Fehr J. 1989. The cell surface glycoprotein Mac-1 (CD11b/CD18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J. Immunol. 142:3537–3545.

    PubMed  CAS  Google Scholar 

  • Schmid-Schönbein GW. 1999. Biomechanics of microcirculatory blood perfusion. Annu. Rev. Bioeng. 1:73–102.

    Google Scholar 

  • Schmid-Schönbein GW. 1987. Mechanisms of granulocyte-capillary-plugging. Prog. Appl. Microcirc. 12:223–230.

    Google Scholar 

  • Schmid-Schönbein GW, Skalak R. 1984. Continuum mechanical model of leukocytes during protopod formation. J. Biomech. Eng. 106:10–18.

    PubMed  Google Scholar 

  • Schmid-Schönbein GW, Shih YY, Chien S. 1980. Morphometry of human leukocytes. Blood 56:866–875.

    PubMed  Google Scholar 

  • Shirasawa B, Hamano K, Ueda M, Ito H, Kobayashi T, Fujimura Y, Kojima A, Esato K. 2000. Contribution of proliferating leukocytes to phenotypic change in smooth muscle cells during the development of coronary arteriosclerosis in transplanted hearts. Eur. Surg. Res. 32:30–38.

    Article  PubMed  CAS  Google Scholar 

  • Shyy JY, Chien S. 1997. Role of integrins in cellular responses to mechanical stress and adhesion. Curr. Opin. Cell Biol. 9:707–713.

    Article  PubMed  CAS  Google Scholar 

  • Suematsu M, DeLano FA, Poole D, Engler RL, Miyasaka M, Zweifach BW, Schmid-Schönbein GW. 1994. Spatial and temporal correlation between leukocyte behavior and cell injury in postischemic rat skeletal muscle microcirculation. Lab. Invest. 70:684–695.

    PubMed  CAS  Google Scholar 

  • Suematsu M, Suzuki H, Ishii H, Kato S, Yanagisawa T, Asako H, Suzuki M, Tsuchiya, M. 1992. Early midzonal oxidative stress preceding cell death in hypoperfused rat liver. Gastroenterology 103:994–1001.

    PubMed  CAS  Google Scholar 

  • Taylor AD, Neelamegham S, Hellums JD, Smith CW, Simon SI. 1996. Molecular dynamics of the transition from L-selectin-to beta 2-integrin-dependent neutrophil adhesion under defined hydrodynamic shear. Biophys. J. 71:3488–3500.

    PubMed  CAS  Google Scholar 

  • Thomas L. 1974. Inflammation as a disease mechanism. In: The Inflammatory Process. Zweifach BW, Grant L, McCluskey RT, eds Academic Press, New York.

    Google Scholar 

  • Topper JN, Gimbrone MA, Jr. 1999. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today 5:40–46.

    PubMed  CAS  Google Scholar 

  • Traub O, Berk BC. 1998. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685.

    PubMed  CAS  Google Scholar 

  • Tung DK-L, Bjursten LM, Zweifach BW, Schmid-Schönbein, GW. 1997. Leukocyte contribution to parenchymal cell death in an experimental model of inflammation J. Leukoc Biol. 62:163–175.

    CAS  Google Scholar 

  • Vedder NB, Harlan JM. 1988. Increased surface expression of CD11b/CD18 (Mac-1) is not required for stimulated neutrophil adherence to cultured endothelium. J. Clin. Invest. 81:676–682.

    PubMed  CAS  Google Scholar 

  • Worthen GS, Schwab III B, Elson EL, Downey GP. 1989. Cellular mechanics of stimulated neutrophils: stiffening of cells induces retention in pores in vitro and lung capillaries in vivo. Science 245:183–186.

    PubMed  CAS  Google Scholar 

  • Zhao Y, Chien S, Skalak R. 1995. A stochastic model of leukocyte rolling. Biophys. J. 69: 1309–1320.

    PubMed  CAS  Google Scholar 

  • Zigmond SH. 2000. How WASP regulates actin polymerization. J. Cell Biol. 150:F117–20.

    Article  PubMed  CAS  Google Scholar 

  • Zweifach BW, Grant L, McCuskey RT. 1974. The Inflammatory Process. Academic Press, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Schmid-Schönbein, G.W., Fukuda, S. (2003). The Role of Biomechanics in Analysis of Cardiovascular Diseases: Regulation of the Fluid Shear Response by Inflammatory Mediators. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_25

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics