Skip to main content

Abstract

Since the discovery of photography in the mid-1820s, imaging technology has moved far beyond the visible wavelength range. On one hand x-ray radiography is such an imaging technique which uses subatomic wavelengths, whereas on the other hand radars employ waves with wavelengths of several metres. However, it is seen that in last several years the field of terahertz imaging technology has become an area of interest, due to its various advantages. Actually discovery of new technologies in generation and detection of terahertz radiation have revolutionized this field. Promising applications for terahertz imaging, spectroscopy and sensing have generated much of this interest. By terahertz, generally the electromagnetic spectrum within frequency range of 0.1-10 THz is meant, which corresponds to 3000-30 μm. Terahertz waves are non-ionizing and non-invasive and hence have no risk for living organisms. Also they can provide images which are comparable to x-ray images. Though some of the techniques of THz imaging have been borrowed from well-established techniques like x-ray computed tomography, synthetic aperture radar etc., but several techniques have been exclusively developed for terahertz imaging. Compared to microwaves the THz radiation has much smaller wavelengths and thus provides higher image resolution. However, due to long wavelengths of THz radiation compared to visible wavelengths, far-field imaging using THz radiations has low resolution compared to optical systems. It is found that THz imaging has tremendous potential in applications like security screening, inspection of foods, inspection of semiconductors, pharmaceutical inspection, 2D and 3D imaging, including medical diagnosis to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Mittleman Daniel, Twenty years of terahertz imaging. Opt. Express 26(8), 9417–9431 (2018)

    Article  ADS  Google Scholar 

  2. C. Yu, S. Fan, Y. Sun, E. Pickwell-Macpherson, The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33–45 (2012)

    Google Scholar 

  3. Z.D. Taylor, J. Garritano, S. Sung, N. Bajwa, D.B. Bennett, B. Nowroozi, P. Tewari, J.W. Sayre, J.P. Hubschman, S.X. Deng, E.R. Brown, W.S. Grundfest THz and mm-wave sensing of corneal tissue water content: in vivo sensing and imaging results. IEEE Trans. THz Sci. IEEE Trans. Terahertz Sci. Technol. 5(2), 184–196 (2015)

    Google Scholar 

  4. E. Pickwell, V.P. Wallace, Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), R301–R310 (2006)

    Article  ADS  Google Scholar 

  5. S. Hadjiloucas, L.S. Karatzas, J.W. Bowen, Measurements of leaf water content using terahertz radiation. IEEE Trans. Microw. Theory Tech. 47(2), 142–149 (1999)

    Article  ADS  Google Scholar 

  6. M. Koch, S. Hunsche, P. Schumacher, M.C. Nuss, J. Feldmann, J. Fromm, THz-imaging: a new method for density mapping of wood. Wood Sci. Technol. 32(6), 421–427 (1998)

    Article  Google Scholar 

  7. J.H. Teng, A. Maier Stefan, D.D. Willis Karl, 9 Disruptive Technologies Changing The World. Report 2015 (PreScouter Inc., 2015), p. 73

    Google Scholar 

  8. “Terahertz (THz) Technology: An Introduction and Research Update”, High Frequency Electronics Copyright © 2008 Summit Technical Media, LLC (February 2008)

    Google Scholar 

  9. R.A. Lewis, A review of terahertz sources. J. Phys. D Appl. Phys. 47, 374001 (2014)

    Article  Google Scholar 

  10. C. Thacker, A. Cooray, J. Smidt, F. De Bernardis, K. M-Wynne, A. Amblard, R. Auld, M. Baes, D.L. Clements, A. Dariush, G. De Zotti, L. Dunne, S. Eales, R. Hopwood, C. Hoyos, E. Ibar, M. Jarvis, S. Maddox, M.J. Michalowski, E. Pascale, D. Scott, S. Serjeant, M.W.L. Smith, E. Valiante, P. van der Werf, H-Atlas: the cosmic abundance of dust from the far‐infrared background power spectrum. The Astrophysical J. 768, 58 (2013)

    Google Scholar 

  11. V.M. Zolotarev, R.K. Mamedov, A.N. Bekhterev, B.Z. Volchek, Spectral emissivity of a globar lamp in the 2–50 μm region. J. Opt. Technol. 74(6), 378–384 (2007)

    Article  Google Scholar 

  12. S. Pérez, T. González, D. Pardo, J. Mateos, Terahertz Gunn-like oscillations in GaAs/InAlAs planar diodes. Appl. Phys. Lett. 103, 094516 (2008)

    Google Scholar 

  13. A. Maestrini, J.S. Ward, J.J. Gill, C. Lee, B. Thomas, R.H. Lin, G. Chattopadhyay, I. Mehdi, A frequency-multiplied source with more than 1 mW of power across the 900-GHz band. IEEE Trans. Microw. Theory Tech. 58(7), 1925–1932 (2010)

    Article  ADS  Google Scholar 

  14. W. He, C.R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, A.W. Cross, High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Phys. Rev. Lett. 110, 165101 (2013)

    Article  ADS  Google Scholar 

  15. V.L. Bratman, Y.K. Kalynov, V.N. Manuilov, Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 102, 245101 (2009)

    Article  ADS  Google Scholar 

  16. J.M. Byrd, W.P. Leemans, A. Loftsdottir, B. Marcelis, Michael C. Martin, W.R. McKinney, F. Sannibale, T. Scarvie, C. Steier, Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys. Rev. Lett. 89, 224801 (2002)

    Article  ADS  Google Scholar 

  17. J. Horvat, R.A. Lewis, Peeling adhesive tape emits electromagnetic radiation at terahertz frequencies. Opt. Lett. 34, 2195–2197 (2009). https://doi.org/10.1364/OL.34.002195

    Article  ADS  Google Scholar 

  18. D.L. Cortie, R.A. Lewis, Terahertz surfoluminescence. Surf. Sci. 606, 1573–1576 (2012)

    Article  ADS  Google Scholar 

  19. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies, Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174–178 (2009)

    Article  ADS  Google Scholar 

  20. B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1, 517–525 (2007)

    Article  ADS  Google Scholar 

  21. X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, Paul K. Chu, Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 6, 103–106 (2011)

    Article  ADS  Google Scholar 

  22. G. Jotzu, M. Cooper, P. Parkinson, M.B. Johnston, Virtual terahertz spectrometer (2009). https://www.thz.physics.ox.ac.uk

  23. B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1719 (1995)

    Article  ADS  Google Scholar 

  24. K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, M. Tonouchi, Scanning laser terahertz near-field imaging system. Opt. Express 20(12), 12959–12965 (2012)

    Article  ADS  Google Scholar 

  25. J.J. Lynch, P.A. Macdonald, H.P. Moyer, R.G. Nagele, Passive millimeter wave imaging sensors for commercial markets. Appl. Opt. 49(19), E7–E12 (2010)

    Article  ADS  Google Scholar 

  26. V.G. Kolinko, S.H. Lin, A. Shek, W. Manning, C. Martin, M. Hall, O. Kirsten, J. Moore, D.A. Wikner, A passive millimeter-wave imaging system for concealed weapons and explosives detection. Proc. SPIE 5781, (Optics and Photonics in Global Homeland Security, 2005), pp. 85–92. (19 May 2005)

    Google Scholar 

  27. H. Song, T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications. 1st edn. (Jenny Stanford Publishing, 2015), p. 565

    Google Scholar 

  28. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325 (2007)

    Article  ADS  Google Scholar 

  29. Lee C. H. Microwave Photonics. 2nd edn. (CRC Press, 2013), p. 441

    Google Scholar 

  30. H. Guerboukha, K. Nallappan, M. Skorobogatiy, Toward real-time terahertz imaging. Adv. Opt. Photonics 10(4), 843–938 (2018)

    Article  ADS  Google Scholar 

  31. A.J. Fitzgerald, Classification of terahertz-pulsed imaging data from excised breast tissue. J. Biomed. Opt. 17, 016005 (2012)

    Article  ADS  Google Scholar 

  32. T. Löffler, K. Siebert, S. Czasch, T. Bauer, H.G. Roskos, Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol. 47, 3847–3852 (2002)

    Article  Google Scholar 

  33. J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, P. Mounaix, Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 35, 382–411 (2014)

    Article  Google Scholar 

  34. L. Duvillaret, F. Garet, J.L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996)

    Article  ADS  Google Scholar 

  35. L. Thrane, R.H. Jacobsen, P.U. Jepsen, S.R. Keiding, THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 240, 330–333 (1995)

    Article  ADS  Google Scholar 

  36. P.U. Jepsen, B.M. Fischer, Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 30, 29–31 (2005)

    Article  ADS  Google Scholar 

  37. P.U. Jepsen, U. Møller, H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15, 14717–14737 (2007)

    Article  ADS  Google Scholar 

  38. P.U. Jepsen, J.K. Jensen, U. Møller, Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt. Express 16, 9318–9331 (2008)

    Article  ADS  Google Scholar 

  39. U. Møller, D.G. Cooke, K. Tanaka, P.U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids. J. Opt. Soc. Am. B 26, A113–A125 (2009)

    Article  ADS  Google Scholar 

  40. M. Naftaly, R. Dudley, Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Opt. Lett. 34, 1213–1215 (2009)

    Article  ADS  Google Scholar 

  41. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002)

    Article  Google Scholar 

  42. S. Fan, Y. He, B.S. Ung, E. Pickwell-MacPherson, The growth of biomedical terahertz research. J. Phys. D 47, 374009 (2014)

    Article  Google Scholar 

  43. J.F. O’Hara, W. Withayachumnankul, I. Al-Naib, A review on thin-film sensing with terahertz waves. J. Infrared Millim. Terahertz Waves 33, 245–291 (2012)

    Article  Google Scholar 

  44. P.H. Bolivar, M. Brucherseifer, J.G. Rivas, R. Gonzalo, I. Ederra, A. Reynolds, M. Holker, P. de Maagt, Measurement of the dielectric constant and loss tangent of high dielectric constant materials at terahertz frequencies. IEEE Trans. Microw. Theory Tech. 51, 1062–1066 (2003)

    Article  ADS  Google Scholar 

  45. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 95, 1658–1665 (2007)

    Article  Google Scholar 

  46. I. Pupeza, R. Wilk, M. Koch, Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 15, 4335–4350 (2007)

    Article  ADS  Google Scholar 

  47. M. Hangyo, T. Nagashima, S. Nashima, Spectroscopy by pulsed terahertz radiation. Meas. Sci. Technol. 13, 1727–1738 (2002)

    Article  ADS  Google Scholar 

  48. W. Withayachumnankul, B. Ferguson, T. Rainsford, S.P. Mickan, D. Abbott, Simple material parameter estimation via terahertz time-domain spectroscopy. Electron. Lett. 41, 800–801 (2005)

    Article  Google Scholar 

  49. J. Lloyd-Hughes, T.I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33, 871–925 (2012)

    Article  Google Scholar 

  50. F.A. Hegmann, O. Ostroverkhova, D.G. Cooke, Probing organic semiconductors with terahertz pulses, in Photophysics of Molecular Materials (Wiley, 2006), pp. 367–428

    Google Scholar 

  51. D.M. Mittleman, S. Hunsche, L. Boivin, M.C. Nuss, T-ray tomography. Opt. Lett. 22, 904–906 (1997)

    Article  ADS  Google Scholar 

  52. A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, Terahertz imaging of hidden paint layers on canvas, in 34th International Conference Infrared, Millimeter, Terahertz Waves (IRMMW-THz), vol. 17, pp. 904–906 (2009)

    Google Scholar 

  53. A. Cosentino, Terahertz and cultural heritage science: examination of art and archaeology. Technologies 4, 1–13 (2016)

    Article  Google Scholar 

  54. C. Seco-Martorell, V. López-Domínguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, J. Tejada, Goya’s artwork imaging with terahertz waves. Opt. Express 21, 17800–17805 (2013)

    Article  ADS  Google Scholar 

  55. E. Abraham, K. Fukunaga, Terahertz imaging applied to the examination of artistic objects. Stud. Conserv. 60, 343–352 (2015)

    Article  Google Scholar 

  56. K. Fukunaga, M. Picollo, Terahertz spectroscopy applied to the analysis of artists’ materials. Appl. Phys. A 100, 591–597 (2010)

    Article  ADS  Google Scholar 

  57. Y.-C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417, 48–60 (2011)

    Article  Google Scholar 

  58. J. Sibik, J.A. Zeitler, Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy. Adv. Drug Deliv. Rev. 100, 147–157 (2016)

    Article  Google Scholar 

  59. J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59, 209–223 (2007)

    Article  Google Scholar 

  60. M. Haaser, K.C. Gordon, C.J. Strachan, T. Rades, Terahertz pulsed imaging as an advanced characterisation tool for film coatings—a review. Int. J. Pharm. 457, 510–520 (2013)

    Article  Google Scholar 

  61. A. Brahm, M. Kunz, S. Riehemann, G. Notni, A. Tünnermann, Volumetric spectral analysis of materials using terahertz-tomography techniques. Appl. Phys. B 100, 151–158 (2010)

    Article  ADS  Google Scholar 

  62. B. Recur, J.P. Guillet, I. Manek-Hönninger, J.C. Delagnes, W. Benharbone, P. Desbarats, J.P. Domenger, L. Canioni, P. Mounaix, Propagation beam consideration for 3D THz computed tomography. Opt. Express 20, 5817–5829 (2012)

    Article  ADS  Google Scholar 

  63. B. Recur, H. Balacey, J. Bou Sleiman, J.B. Perraud, J.-P. Guillet, A. Kingston, P. Mounaix, Ordered subsets convex algorithm for 3D terahertz transmission tomography. Opt. Express 22, 23299–23309 (2014)

    Google Scholar 

  64. W. Withayachumnankul, G.M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B.S.Y. Ung, J. Balakrishnan, B.W.H. Ng, B. Ferguson, S.P. Mickan, B.M. Fischer, D. Abbott, T-ray sensing and imaging. Proc. IEEE 95, 1528–1558 (2007)

    Article  Google Scholar 

  65. T. Yuan, J.Z. Xu, X.C. Zhang, Development of terahertz wave microscopes. Infrared Phys. Technol. 45, 417–425 (2004)

    Article  ADS  Google Scholar 

  66. A.J.L. Adam, Review of near-field terahertz measurement methods and their applications: how to achieve sub-wavelength resolution at THz frequencies. J. Infrared Millim. Terahertz Waves 32, 976–1019 (2011)

    Article  Google Scholar 

  67. F. Blanchard, A. Doi, T. Tanaka, K. Tanaka, Real-time, subwavelength terahertz imaging. Annu. Rev. Mater. Res. 43, 237–259 (2013)

    Article  ADS  Google Scholar 

  68. U.S. de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M.S. Vitiello, P.A. Benedetti, H.E. Beere, D.A. Ritchie, Terahertz confocal microscopy with a quantum cascade laser source. Opt. Express 20, 21924–21931 (2012)

    Google Scholar 

  69. N.N. Zinov’ev, A.V. Andrianov, Confocal terahertz imaging. Appl. Phys. Lett. 95, 011114 (2009)

    Google Scholar 

  70. M. Flammini, C. Bonsi, C. Ciano, V. Giliberti, E. Pontecorvo, P. Italia, E. DelRe, M. Ortolani, Confocal terahertz imaging of ancient manuscripts. J. Infrared Millim. Terahertz Waves 38, 435–442 (2017)

    Article  Google Scholar 

  71. M.A. Salhi, I. Pupeza, M. Koch, Confocal THz laser microscope. J. Infrared Millim. Terahertz Waves 31, 358–366 (2010)

    Google Scholar 

  72. N.V. Chernomyrdin, A.O. Schadko, S.P. Lebedev, V.L. Tolstoguzov, V.N. Kurlov, I.V. Reshetov, I.E. Spektor, M. Skorobogatiy, S.O. Yurchenko, K.I. Zaytsev, Solid immersion terahertz imaging with sub-wavelength resolution. Appl. Phys. Lett. 110, 221109 (2017)

    Article  ADS  Google Scholar 

  73. J. Grzyb, B. Heinemann, U.R. Pfeiffer, Solid-state terahertz superresolution imaging device in 130-nm SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 65, 4357–4372 (2017)

    Article  ADS  Google Scholar 

  74. M.I. Dyakonov, M.S. Shur, Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1645 (1996)

    Article  ADS  Google Scholar 

  75. W. Knap, M.I. Dyakonov, Field effect transistors for terahertz applications, in Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013), pp. 121–155

    Google Scholar 

  76. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, M.S. Shur, Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)

    Article  ADS  Google Scholar 

  77. A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolvar, D. Glaab, H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)

    Article  ADS  Google Scholar 

  78. Y.-S. Lee, Continuous-wave terahertz sources and detectors, in Principles of Terahertz Science and Technology (Springer, 2009), pp. 117–157

    Google Scholar 

  79. J. Yang, S. Ruan, M. Zhang, Real-time, continuous-wave terahertz imaging by a pyroelectric camera. Chin. Opt. Lett. 6, 29–31 (2008)

    Article  Google Scholar 

  80. M.J.E. Golay, The theoretical and practical sensitivity of the pneumatic infra-red detector. Rev. Sci. Instrum. 20, 816–820 (1949)

    Article  ADS  Google Scholar 

  81. P.L. Richards, Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1–24 (1994)

    Article  ADS  Google Scholar 

  82. A.W.M. Lee, B.S. Wil, S. Kumar, Q. Hu, J.L. Reno, Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photon. Technol. Lett. 18, 1415–1417 (2006)

    Article  ADS  Google Scholar 

  83. M.A. Dem’yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov, Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser. Appl. Phys. Lett. 92, 131116 (2008)

    Google Scholar 

  84. A.W. Lee, Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt. Lett. 30, 2563–2565 (2005)

    Article  ADS  Google Scholar 

  85. B.N. Behnken, G. Karunasiri, D.R. Chamberlin, P.R. Robrish, J. Faist, Real-time imaging using a 28 THz quantum cascade laser and uncooled infrared microbolometer camera. Opt. Lett. 33, 440–442 (2008)

    Article  ADS  Google Scholar 

  86. F. Sizov, A. Rogalski, THz detectors. Prog. Quantum Electron. 34, 278–347 (2010)

    Article  ADS  Google Scholar 

  87. N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, T. Sasaki, Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region. J. Infrared Millim. Terahertz Waves 36, 947–960 (2015)

    Article  Google Scholar 

  88. N. Kanda, K. Konishi, N. Nemoto, K. Midorikawa, M. Kuwata-Gonokami, Real-time broadband terahertz spectroscopic imaging by using a highsensitivity terahertz camera. Sci. Rep. 7, 42540 (2017)

    Article  ADS  Google Scholar 

  89. K. Fan, J.Y. Suen, X. Liu, W.J. Padilla, All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601–604 (2017)

    Article  ADS  Google Scholar 

  90. B. Kearney, F. Alves, D. Grbovic, G. Karunasiri, Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications. Opt. Eng. 52, 013801 (2013)

    Article  ADS  Google Scholar 

  91. W. Withayachumnankul, C.M. Shah, C. Fumeaux, B.S.Y. Ung, W.J. Padilla, M. Bhaskaran, D. Abbott, S. Sriram, Plasmonic resonance toward terahertz perfect absorbers. ACS Photon. 1, 625–630 (2014)

    Article  Google Scholar 

  92. F. Alves, B. Kearney, D. Grbovic, N.V. Lavrik, G. Karunasiri, Strong terahertz absorption using SiO2/Al based metamaterial structures. Appl. Phys. Lett. 100, 111104 (2012)

    Article  ADS  Google Scholar 

  93. I.E. Carranza, J.P. Grant, J. Gough, D. Cumming, Terahertz metamaterials absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017)

    Google Scholar 

  94. E. Leiss-Holzinger, K. Wiesauer, H. Stephani, B. Heise, D. Stifter, B. Kriechbaumer, S.J. Spachinger, C. Gusenbauer, G. Withalm, Imaging of the inner structure of cave bear teeth by novel non-destructive techniques, Palaeontol. Electron. 18 (2015)

    Google Scholar 

  95. E.M. Pogson, Thesis, Terahertz Applications in Medicine, the Environment and Optics, University of Wollongong, Australia, 2012

    Google Scholar 

  96. Y.C. Sim, J.Y. Park, K.M. Ahn, C. Park, J.H. Son, Terahertz imaging of excised oral cancer at frozen temperature. Biomed. Opt. Express 4, 1413–1421 (2013)

    Article  Google Scholar 

  97. D.A. Crawley, C. Longbottom, B.E. Cole, C.M. Ciesla, D. Arnone et al., Terahertz pulse imaging: a pilot study of potential applications in dentistry. Caries Res. 37, 352–359 (2003)

    Article  Google Scholar 

  98. D. Crawley, C. Longbottom, V.P. Wallace, B. Cole, D. Arnone et al., Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 8, 303–307 (2003)

    Article  ADS  Google Scholar 

  99. K. Kawase, Terahertz imaging for drug detection and large-scale integrated circuit inspection. Opt. Photonics News 15(10), 34–39 (2004)

    Article  ADS  Google Scholar 

  100. J.F. Federici et al., THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), S266–S280 (2005)

    Article  Google Scholar 

  101. M. Lu et al., Detection and identification of illicit drugs using terahertz imaging. J. Appl. Phys. 100(10) (2006)

    Google Scholar 

  102. C. Baker et al., Detection of concealed explosives at a distance using terahertz technology. Proc. IEEE 95(8), 1559–1565 (2007)

    Article  Google Scholar 

  103. H. Zhong, A. Redo-Sanchez, X.C. Zhang, Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14(20), 9130–9141 (2006)

    Article  ADS  Google Scholar 

  104. M.C. Kemp, Explosives detection by terahertz spectroscopy—a bridge too far? IEEE Trans. Terahertz Sci. Technol. 1(1), 282–292 (2011)

    Article  ADS  Google Scholar 

  105. D.G. Allis, T.M. Korter, Theoretical analysis of the terahertz spectrum of the high explosive PETN. ChemPhysChem 7(11), 2398–2408 (2006)

    Article  Google Scholar 

  106. R. Appleby, R.N. Anderton, Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007)

    Article  Google Scholar 

  107. H. Seong-Tae et al., Development of a compact sub-terahertz gyrotron and its application to t-ray real-time imaging for food inspection, in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2012

    Google Scholar 

  108. C. Jördens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 47(3), 037003 (2008)

    Article  ADS  Google Scholar 

  109. J.B. Jackson et al., Terahertz imaging for non-destructive evaluation of mural paintings. Opt. Commun. 281(4), 527–532 (2008)

    Article  ADS  Google Scholar 

  110. E. Abraham et al., Broadband terahertz imaging of documents written with lead pencils. Opt. Commun. 282(15), 3104–3107 (2009)

    Article  ADS  Google Scholar 

  111. A.J.L. Adam et al., TeraHertz imaging of hidden paintlayers on canvas. Opt. Express 17(5), 3407–3416 (2009)

    Article  ADS  Google Scholar 

  112. L. Oehrstroem et al., Technical note: terahertz imaging of ancient mummies and bone. Am. J. Phys. Anthropol. 142(3), 497–500 (2010)

    Article  Google Scholar 

  113. M. Walther, B.M. Fischer, A. Ortner, A. Bitzer, A. Thoman, H. Helm, Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem. 397 (2010)

    Google Scholar 

  114. Y.C. Shen, P.F. Taday, Development and application of terahertz pulsed imaging for non-destructive inspection of pharmaceutical tablet. IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008)

    Article  ADS  Google Scholar 

  115. E.K. Rahani et al., Mechanical damage detection in polymer tiles by THz radiation. IEEE Sens. J. 11(8), 1720–1725 (2011)

    Article  ADS  Google Scholar 

  116. P. Mousavi et al., Simultaneous composition and thickness measurement of paper using terahertz timedomain spectroscopy. Appl. Opt. 48(33), 6541–6546 (2009)

    Article  ADS  Google Scholar 

  117. D.T. Nguyen, Ph.D. Thesis: Design, Modelling, and Characterization of Innovative THz Detectors. Université de Grenoble, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, A. (2020). Advances in Terahertz Imaging. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_10

Download citation

Publish with us

Policies and ethics