Skip to main content
Log in

Terahertz spectroscopy applied to the analysis of artists’ materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Terahertz (THz) spectroscopy and imaging have been actively studied in these decades. THz waves (0.1–10 THz) are non-invasive, can penetrate opaque materials, and can be used to obtain fingerprint spectra whose characteristics depend upon molecular and intermolecular behavior. Unlike the mid-infrared region, no commercial spectral library is available for the THz region. Consequently, a spectral database of artists’ materials was developed in order to include THz spectroscopy among conservation science techniques. Most pigments and some synthetic polymers have characteristic fingerprint spectra in the THz region. With this technique most of these materials used in paintings can be identified alone or as paint, a combination of pigments and binders. Although the meaning of the spectral features has so far not been fully explained, previous studies on optical materials suggest that phonon absorption and the behavior of hydrogen bonds contribute to their spectral features. Examples of THz spectra of various art materials are discussed on the basis of measurements obtained using a conventional Fourier transform system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ed G. Gruner, Millimeter and Submillimeter Wave Spectroscopy of Solids (Springer, Berlin, 1998)

    Book  Google Scholar 

  2. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M. Koch, Appl. Phys. B 68, 1085 (1999)

    Article  ADS  Google Scholar 

  3. D.M. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin, 2003)

    Google Scholar 

  4. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  5. K. Kawase, Opt. Photonics News 34–39 (2004). October issue

  6. B.B. Hu, M.C. Nuss, Opt. Lett. 20, 1716 (1995)

    Article  ADS  Google Scholar 

  7. Y. Shen, P.F. Taday, IEEE J. Sel. Top. Quantum Electron. 14, 407 (2008)

    Article  Google Scholar 

  8. H. Hirori, K. Yamashita, M. Nagai, K. Tanaka, Jpn. J. Appl. Phys. 43, L1287 (2004)

    Article  ADS  Google Scholar 

  9. T. Arikawa, M. Nagai, K. Tanaka, Chem. Phys. Lett. 457, 12 (2008)

    Article  ADS  Google Scholar 

  10. D.A. Newnham, P.F. Taday, Appl. Spectrosc. 62, 96 (2008)

    Article  Google Scholar 

  11. T. Yasui, T. Yasuda, K. Sawanaka, T. Araki, Appl. Opt. 44, 6849 (2005)

    Article  ADS  Google Scholar 

  12. D. Zimdars, J.S. White, G. Stuk, A. Chernovsky, G. Fichter, S. Williamson, in Proc. Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, No. CMLL1 (2006)

  13. G.P. Gallerano, A. Doria, E. Giovenale, G. Messina, A. Petralia, I. Spassovsky, K. Fukunaga, I. Hosako, THz-ARTE: non-invasive terahertz diagnostics for art conservation, in Proc. IRMMW-THz, No. T2G2 (2008)

  14. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, T. Irie, Proc. SPIE 6940, 69402Y (2008)

    Article  Google Scholar 

  15. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, H. Yasuda, Proc. IEEE 95, 1611 (2007)

    Article  Google Scholar 

  16. T. Kleine-Ostmann, T. Schrader, M. Bieler, U. Siegner, C. Monte, B. Gutschwager, J. Hollandt, R. Müller, G. Ulm, I. Pupeza, M. Koch, Frequenz 62, 137 (2008)

    Google Scholar 

  17. M. Naftaly, R. Dudley, Opt. Lett. 31, 10677 (2009)

    Google Scholar 

  18. W. Köhler, M. Panzer, U. Klotzach, S. Winner, M. Helm, F. Rutz, C. Jördens, M. Koch, H. Leitner, in Proc. of European Conference of Non-Destructive Testing, No. P181 (2006)

  19. K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, IEICE Electron. Express 4, 258 (2007)

    Article  Google Scholar 

  20. J.-M. Manceau, A. Nevin, C. Fotakis, S. Tzortzakis, Appl. Phys. B 90, 365 (2008)

    Article  ADS  Google Scholar 

  21. J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling III, S.L. Williamson, M. Menu, G.A. Mourou, Opt. Commun. 281, 527 (2008)

    Article  ADS  Google Scholar 

  22. N. Sunaguchi, Y. Sasaki, M. Kawai, T. Yuasa, C. Otani, in Proc. IRMMW-THz 2008, No. R5D14 (2008)

  23. A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, Terahertz imaging of hidden paint layers on canvas. Opt. Express 17, 3407 (2009)

    Article  ADS  Google Scholar 

  24. K. Fukunaga, IIC News Conserv. 2 (2009). February issue

  25. C.J. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, J. Pharm. Sci. 94, 837 (2005)

    Article  Google Scholar 

  26. Y. Ohki, M. Okada, N. Fuse, K. Iwai, M. Mizuno, K. Fukunaga, Appl. Phys. Express 1, 122401 (2008)

    Article  ADS  Google Scholar 

  27. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997)

    Google Scholar 

  28. O. Madelug, Landolt-Bernstein Semiconductors: Data Handbook (Springer, Berlin, 2003)

    Google Scholar 

  29. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (3800–45 cm −1 ) (Academic Press, New York, 1971)

    Google Scholar 

  30. C.C. Homes, G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.B. Tanner, Appl. Opt. 46, 7884 (2007)

    Article  ADS  Google Scholar 

  31. K. Abe, S. Hayashi, N. Doki, C. Otani, K. Kawase, T. Miyazawa, Y. Ogawa, Bunseki Kagaku 56, 851 (2007). In Japanese with English abstract

    Article  Google Scholar 

  32. B. Pretzel, B. Price, M. Picollo, C. Davis, in Preprints of the 15th Triennial ICOM Meeting, New Delhi (2008), p. 887

  33. K. Fukunaga, I. Hosako, S. Ohno, H. Minamide, C. Otani, H. Ito, in Proc. IRMMW-THz 2009, T3B01 (2009)

  34. C. Karr Jr., J.J. Kovach, Appl. Spectrosc. 23, 219 (1969)

    Article  ADS  Google Scholar 

  35. R. Zallen, G. Lucovsky, Phys. Rev. B 1, 4058 (1970)

    Article  ADS  Google Scholar 

  36. H.D. Riccius, K.J. Siemsen, J. Chem. Phys. 52, 4090 (1970)

    Article  ADS  Google Scholar 

  37. M.A. Nusimovici, G. Gorre, Phys. Rev. B 8, 1648 (1973)

    Article  ADS  Google Scholar 

  38. M. Fabbri, M. Picollo, S. Porcinai, M. Bacci, Appl. Spectrosc. 55, 420 (2001)

    Article  ADS  Google Scholar 

  39. E.H. Korte, A. Röseler, Infrared and Raman Spectroscopy. Methods and Applications (VCH, New York, 1995), p. 572

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Fukunaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukunaga, K., Picollo, M. Terahertz spectroscopy applied to the analysis of artists’ materials. Appl. Phys. A 100, 591–597 (2010). https://doi.org/10.1007/s00339-010-5643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5643-y

Keywords

Navigation