Skip to main content

Molecular Physiology of Arsenic Uptake, Transport, and Metabolism in Rice

  • Chapter
  • First Online:
Arsenic in Drinking Water and Food

Abstract

Arsenic (As) becomes a global problem by affecting both plant and human health. It is a nonessential toxic metalloid that can be readily taken up by plant root and accumulated inside the plant tissue causing detrimental effects. Rice, the major crop, is greatly affected by As due to high contamination of As in paddy soil and its ability to accumulate heaps of As inside the tissues. Besides As being a group I carcinogen, it affects human health through the food chain. In the situation, the major aim is to develop rice cultivars with less As accumulation to decrease toxic effects, thereby elevating production and quality of rice. For this, a deep understanding on all of everything of As from soil to grains is quite essential. This review encompasses uptake and transportation of As, transporters, accumulation and toxicity, and detoxification mechanisms against As in rice. Impact of As on health and economy is also summarized and in addition, development of As tolerant plant is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Meharg AA (2002) Relative toxicity of Arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66

    Article  CAS  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in the terrestrial environments: biogeochemistry bioavailability, and risks of metals. Springer, New York, pp 47–71

    Book  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM et al (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338:367–382

    Article  CAS  Google Scholar 

  • Alam MS, Islam MA (2011) Assessing the effect of arsenic contamination on modern rice production: evidences from a farm level study. Bangladesh J Agric Econ XXXIV:15–28

    Google Scholar 

  • Alava P, Laing GD, Tack F, De Ryck T, deWiele TV et al (2015) Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon. Chemosphere 119:757–762

    Article  CAS  Google Scholar 

  • Anawar HM, Akai J, Mostofa KM, Safiullah S, Tareq SM et al (2002) Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int 27:597–604

    Article  CAS  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F et al (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:252–258

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ et al (2010) Biosorption studies on powder of stem of Acacia nilotica: removal of arsenic from surface water. J Hazard Mater 178:941–948

    Article  CAS  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S et al (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res Int 24:9142–9158

    Article  CAS  Google Scholar 

  • Banejad H, Olyaie E (2011) Application of an artificial neural network model to rivers water quality indexes prediction – a case study. J Am Sci 7:60–65

    Google Scholar 

  • Batista BL, Nigar M, Mestrot A, Rocha BA, Junior FB, Price AH et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in gangetic West Bengal, India. Paddy Water Environ 8:63–70

    Article  Google Scholar 

  • Bhattacharya S, Gupta K, Debnath S et al (2012) Arsenic bioaccumulation in rice and edible plants and subsequent transmission through food chain in Bengal basin: a review of the perspectives for environmental health. Toxicol Environ Chem 94:429–441

    Article  CAS  Google Scholar 

  • Bhattacharya P, Jovanovic D, Polya D et al (2014) Best practice guide on the control of arsenic in drinking water. IWA Publishing, London

    Google Scholar 

  • Bienert GP, Schuessler MD, Jahn TP et al (2008) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26

    Article  CAS  Google Scholar 

  • Brackhage C, Huang JH, Schaller J et al (2014) Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.). Sci Rep 4:4944

    Article  CAS  Google Scholar 

  • Campbell JA, Stark JH, Carlton-Smith CH (1985) International Symposium on Heavy Metals in the Environment, vol 1. CEP Consultants, Athens, Greece

    Google Scholar 

  • Carbonell Barrachina A, Burlo Carbonell F, Mataix Beneyto J et al (1995) Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  • Carbonell-Barrachina A, Aarabi MA, Delaune RD, Gambrell RP, Patrick WHJ et al (1998) Bioavailability and uptake of arsenic by wetland vegetation: effects on plant growth and nutrition. J Environ Sci Health 33:45–66

    Article  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowhury UK, Chanda CR, et al (2001) Groundwater arsenic contamination in south East Asia, with special reference to Bangladesh and West Bengal, India. Arsenic in the Asia Pacific Adelaide, South Australia, pp 1–4

    Google Scholar 

  • Chatterjee S, Datta S, Mallick PH et al (2013) Use of wetland plants in bioaccumulation of heavy metals. In: Plant-based remediation processes. Springer, Berlin, pp 117–139

    Chapter  Google Scholar 

  • Chen Y, Fu JW, Han YH, Rathinasabapathi B, Ma LQ et al (2016) High As exposure induced substantial arsenite efflux in As-hyperaccumulator Pteris vittata. Chemosphere 144:2189–2194

    Article  CAS  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6:15–24

    Article  CAS  Google Scholar 

  • Chung JY, Yu SD, Seoub HY et al (2014) Environmental source of arsenic exposure. J Prev Med Publ Health 47:253–257

    Article  Google Scholar 

  • Dasgupta T, Hossain SA, Meharg AA et al (2004) An arsenate tolerance gene on chromosome 6 of rice. New Phytol 163:45–49

    Article  CAS  Google Scholar 

  • Dave R, Tripathi RD, Dwivedi S et al (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131

    Article  CAS  Google Scholar 

  • Duan GL, Hu Y, Liu WJ et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421

    CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Arao T, Fujiwara T et al (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  Google Scholar 

  • Duan G, Liu W, Chen X et al (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792

    Article  CAS  Google Scholar 

  • Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG et al (2015) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202

    Article  CAS  Google Scholar 

  • Duxbury JM, Panaullah GM (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. FAO, Rome, pp 1–28

    Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F, Ihsan MZ, Ullah A, Wu C, Bajwa AA et al (2016) Responses of rapid Viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS ONE 11:e0159590

    Article  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W et al (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Francesconi KA, Kuehnelt D (2002) Arsenic compounds in the environment. In: Frankenberger JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 51–94

    Google Scholar 

  • Fransisca Y, Small DM, Morrison PD, Spencer MJS, Ball AS, Jones OAH et al (2015) Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practices and soil geochemistry. Chemosphere 138:1008–1013

    Article  CAS  Google Scholar 

  • Fu Y, Chen M, Bi X et al (2011) Occurrence of arsenic in brown rice and its relationship to soil properties from Hainan Island, China. Environ Pollut 159:1757–1762

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  Google Scholar 

  • Gibb H, Haver C, Gaylor D, Ramasamy S, Lee JS, Lobdell D, Wade T, Chen C, White P, Sams R et al (2011) Utility of recent studies to assess the National Research Council 2001 estimates of cancer risk from ingested arsenic. Environ Health Perspect 119:284–290

    Article  CAS  Google Scholar 

  • Gilbert DD, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR et al (2011) Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci 108:20656–20660

    Article  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA et al (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with different sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • IARC (2012) Biological agents. IARC Monogr Eval Carcinog Risks Hum:100B. PMID:18335640

    Google Scholar 

  • Islam FS, Gault AG, Boothman C et al (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68

    Article  CAS  Google Scholar 

  • Jahan I, Hoque S, Ullah SM, Kibria MG et al (2003) Effects of arsenic on some growth parameters of rice plant. Dhaka Univ J Biol Sci 12:71–77

    Google Scholar 

  • Jia HF, Ren HY, Gu M, Zhao JN, Sun SB, Zhang X et al (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175

    Article  CAS  Google Scholar 

  • Kamiya T, Islam R, Duan G et al (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. J Soil Sci Plant Nutr 59:80–590

    Google Scholar 

  • Karim MM (1999) Arsenic in ground water and health problem in Bangladesh. Wat Res 34:304–310

    Article  Google Scholar 

  • Katsuhara M, Sasano S, Horie T, Matsumoto T, Rhee J, Shibasaka M et al (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219

    Article  CAS  Google Scholar 

  • Kazi TG, Arain MB, Baig JA, Jamali MK, Afridi HI, Jalbani N et al (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019–1026

    CAS  Google Scholar 

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8:10301

    Article  CAS  Google Scholar 

  • Khan SI, Ahmed AKM, Yunus M, Rahman M, Hore SK, Vahter M, Wahed MA (2010) Arsenic and cadmium in food-chain in Bangladesh – an exploratory study. J Health Popul Nutr 28:578–584

    Google Scholar 

  • McCarty KM, Hanh HT, Kyoung-Woong K et al (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26:71–78

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. J Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kumar N, Mallick S, Yadava RN, Singh AP, Sinha S et al (2013) Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: toxicity and defence mechanism. Ecotoxicol Environ Saf 91:171–179

    Article  CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD et al (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  Google Scholar 

  • Lauren JG, Duxbury JM (2005) Management strategies to reduce arsenic uptake by rice. In: Symposium on the behaviour of arsenic in aquifers, soils and plants: implications for management, Dhaka, pp 16–18

    Google Scholar 

  • Li YJ, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB et al (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  Google Scholar 

  • Li YJ, Dankher OP, Carreira L, Smith AP, Meagher RB et al (2006) The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li G, Sun GX, Williams PN, Nunes L, Zhu YG et al (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37:1219–1225

    Article  CAS  Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta-Gen Subj 1840:1574–1582

    Article  CAS  Google Scholar 

  • Lin HT, Wong SS, Li GC et al (2004) Heavy metal content of rice and shellfish in Taiwan. J Food Drug Anal 12:176

    Google Scholar 

  • Lindsay ER, Maathuis FJM (2016) Arabidopsis thaliana NIP7;1 is involved in tissue arsenic distribution and tolerance in response to arsenate. FEBS Lett 590:779–786

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA et al (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture. J Exp Bot 55:1707–1713

    Article  CAS  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J et al (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  CAS  Google Scholar 

  • Liu CW, Chen YY, Kao YH, Maji SK et al (2014) Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu wetland, Taiwan. Wetlands 34:129–140

    Article  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–213

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  Google Scholar 

  • Mandal A (2015) Transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana exhibit reduced accumulation of arsenics and increased tolerance to arsenate. Omics international conference

    Google Scholar 

  • Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    Article  CAS  Google Scholar 

  • Marin AR, Pezeskhi SR, Masscheley PH, Choi HS et al (1993) Effect of dimethyl arsenic acid (DMAA) on growth, tissue arsenic, and photo- synthesis of rice plants. J Plant Nutr 16:865–880

    Article  CAS  Google Scholar 

  • Meharg AA, Adomaco E, Lawgali Y, Deacon C, Williams P et al (2007) Food Standards Agency contract C101045: levels of arsenic in rice–literature review, pp 1–65

    Google Scholar 

  • Meharg AA, Macnair MR (1994) Relationship between plant phosphorus status and the kinetics of arsenate influx in clones of Deschampsia cespitosa (L.) Beauv. that differ in their tolerance to arsenate. Plant Soil 162:99–106

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 44:229–234

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J et al (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Mehrag AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    Article  Google Scholar 

  • Mei XQ, Wong MH, Yang Y, Dong HY, Qiu RL, Ye ZH et al (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117

    Article  CAS  Google Scholar 

  • Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, Cao H, AschebrookKilfo B, Ahmed A, Islam T et al (2013) Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS One 8:e80691

    Article  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta-Gen Subj 1840:1583–1591

    Article  CAS  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK et al (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Article  CAS  Google Scholar 

  • Norton GJ, Duan G, Dasgupta T et al (2009a) Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environ Sci Technol 43:8381–8386

    Article  CAS  Google Scholar 

  • Norton GJ, Islam MR, Deacon CM et al (2009b) Identification of low inorganic and total grain arsenic rice cultivars from Bangladesh. Environ Sci Technol 43:6070–6075

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L et al (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Norton GJ, Adomako EE, Deacon CM, Carey AM, Price AH, Meharg AA et al (2013) Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ Pollut 177:38–47

    Article  CAS  Google Scholar 

  • Pikaray S, Banerjee S, Mukherji S et al (2005) Sorption of arsenic onto Vindhyan shales: role of pyrite and organic carbon. Curr Sci 88:1580–1585

    Google Scholar 

  • Quazi S, Datta R, Sarkar D (2011) Effects of soil types and forms of arsenical pesticide on rice growth and development. Int J Environ Sci Technol 8:445–460

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A et al (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahaman S, Sinha AC, Mukhopadhyay D et al (2011) Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci 23:633–639

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM et al (2007a) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  Google Scholar 

  • Rahman A, Hasegawa H, Mahfuzur Rahman M, Nazrul Islam M, Majid Miah MA, Tasmen A et al (2007b) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Rahman A, Mostofa MG, Alam M, Nahar K, Hasanuzzaman M, Fujita M et al (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers. Biomed Res Int 2015:1–12

    Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching resistant and non-resistant plant species. New Phytol 154:29–43

    Google Scholar 

  • Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J et al (2013) Arsenic in Food chain and community health risk: a study in Gangetic West Bengal. Procedia Environ Sci 18:2–13

    Article  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB et al (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60

    Article  CAS  Google Scholar 

  • Sen J, Chaudhuri ABD (2008) Arsenic exposure through drinking water and its effect on pregnancy outcome in Bengali women. Arh Hig Rada Toksikol 59:271–275

    Article  CAS  Google Scholar 

  • Seyfferth AL, Webb SM, Andrews JC et al (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44(21):8108–8113

    Article  CAS  Google Scholar 

  • Shaibur MR, Kitajima N, Sugawara R, Kondo T, Huq SMI, Kawai S (2006) Physiological and mineralogical properties of arsenic-induced chlorosis in rice seedlings grown hydroponically. Soil Sci Plant Nutr 52:691–700

    Article  CAS  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE et al (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719

    Article  CAS  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Malick S, Mishra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R et al (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedling. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  Google Scholar 

  • Signes-Pastor A, Burlo F, Mitra K et al (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil. Geoderma 137:504–510

    Article  CAS  Google Scholar 

  • Signes-Pastor AJ, Mitra K, Sarkhel S, Hobbes M, Burlo F, De Groot WT, Carbonell-Barrachina AA et al (2008) Arsenic speciation in food and estimation of the dietary intake of inorganic arsenic in a rural village of West Bengal, India. J Agric Food Chem 56:9469–9474

    Article  CAS  Google Scholar 

  • Signes-Pastor AJ, Carey M, Meharg AA et al (2016) Inorganic arsenic in rice based products for infants and young children. Food Chem 191:128–134

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD et al (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM et al (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbateglutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  CAS  Google Scholar 

  • Sohn E (2014) Contamination: the toxic side of rice. Nature 514:S62–S63

    Article  Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192

    Article  CAS  Google Scholar 

  • Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS et al (2014) Phytochelatin–metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201

    Article  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF et al (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 48:805–815

    Article  CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As- contaminated soil. Bulg J Plant Physiol 29:87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatev Z et al (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    Article  CAS  Google Scholar 

  • Syu CH, Huang CC, Jiang PY, Lee CH, Lee DY et al (2015) Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazard Mater 286:179–186

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH et al (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R et al (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension culture under cadmium and zinc stress. Plant Cell Tissue Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK et al (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Tripathi P, Mishra A, Dwivedi S, Chakrabarty D, Trivedi PK, Singh RP, Tripathi RD et al (2012) Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance. Ecotoxicol Environ Saf 79:189–198

    Article  CAS  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Häggblom M et al (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236:173–180

    Article  CAS  Google Scholar 

  • Ullah SM (1998) Arsenic contamination of groundwater and irrigated soils of Bangladesh. In: International conference on arsenic pollution of groundwater in Bangladesh: causes, effects and remedies. Community Hospital, Dhaka, p 133

    Google Scholar 

  • US Food and Drug Administration (2015) Questions & answers: arsenic in rice and rice products. US. FDA, Silver Spring

    Google Scholar 

  • Verma PK, Verma S, Meher AK, Pande V, Mallick S, Bansiwal AK et al (2016) Overexpression of rice glutaredoxins (OsGrxs) significantly reduce sarsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast. Plant Physiol Biochem 106:208–217

    Article  CAS  Google Scholar 

  • Wang P, Zhang W, Mao C, Xu G, Zhao FJ et al (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059

    Article  CAS  Google Scholar 

  • Watanabe T, Kouho R, Katayose T, Kitajima N, Sakamoto N, Yamaguchi N, Shinano T, Urimoto H, Osaki M et al (2014) Arsenic alters uptake and distribution of sulphur in Pteris vittata. Plant Cell Environ 37:45–53

    Article  CAS  Google Scholar 

  • Williams PN, Price AH, Raab A et al (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C et al (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W et al (2011) Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45:6080–6087

    Article  CAS  Google Scholar 

  • Wu Z, Ren H, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 111

    Google Scholar 

  • Wu C, Huang L, Xue SG, Pan WS, Zou Q, Hartley W, Mo JY et al (2017) Effect of arsenic on spatial pattern of radial oxygen loss and iron plaque formation in rice. Trans Nonferrous Met Soc China 27:413–419

    Article  CAS  Google Scholar 

  • Xie ZM, Huang CY (1998) Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Commun Soil Sci Plant 29:2471–2477

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA et al (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  Google Scholar 

  • Xu W, Dai W, Yan H et al (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  Google Scholar 

  • Yamaji N, Ma JF (2011) Further characterization of a rice silicon efflux transporter, Lsi2. Soil Sci Plant Nutr 57:259–264

    Article  CAS  Google Scholar 

  • Yang J, Gao MX, Hu H, Ding XM, Lin HW, Wang L et al (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211:658–670

    Article  CAS  Google Scholar 

  • Zanella L, Fattorini L, Brunetti P, Roccotiello E, Cornara L, D'Angeli S, Della Rovere F, Cardarelli M, Barbieri M, Sanità di Toppi L, Degola F, Lindberg S, Altamura MM, Falasca G et al (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622

    Article  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice. 1. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42:3856–3860

    Article  CAS  Google Scholar 

  • Zhang J, Duan GL (2008) Genotypic difference in arsenic and cadmium accumulation by rice seedlings grown in hydroponics. J Plant Nutr 31:2168–2182

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thounaojam, T.C., Khan, Z., Upadhyaya, H. (2020). Molecular Physiology of Arsenic Uptake, Transport, and Metabolism in Rice. In: Srivastava, S. (eds) Arsenic in Drinking Water and Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-8587-2_15

Download citation

Publish with us

Policies and ethics