Skip to main content

Generation of Electrolyzed Water

  • Chapter
  • First Online:
Electrolyzed Water in Food: Fundamentals and Applications

Abstract

Electrolyzed water (EW) considered as a novel broad-spectrum and high-performance bactericide has gained immense popularity over the last few decades. It offers several advantages over other sanitizers for sanitation of both food contact and noncontact surfaces, such as safety, effective disinfection, easy operation, relatively inexpensive, and environmentally friendly. EW can be produced by electrolyzing soft tap water with sodium chloride as the chemical additive. Different producing equipment and parameters greatly influence the types and properties of EW . During production period, preparation settings are vital factors on the basic properties of EW (available chlorine concentration (ACC) , pH, and oxidization reduction potential (ORP) ) and then influence its inactivation efficiency, including current, water flow rate, salt/acid concentration, electrolyte and electrode, water temperature and hardness, storage environments, and so on. This chapter provides an overview of the production, properties, types of EW , as well as a section on its advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Usall J, Oliveira M et al (2008) Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int J Food Microbiol 123(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Al-Haq MI, Seo Y, Oshita S et al (2002) Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res Int 35(35):657–664

    Article  Google Scholar 

  • Al-Haq MI, Sugiyama J, Isobe S (2005) Applications of electrolyzed water in agriculture and food industries. Food Sci Technol Res 11(2):135–150

    Article  Google Scholar 

  • Al-Holy MA, Rasco BA (2015) The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control 54:317–321

    Article  CAS  Google Scholar 

  • Anonymous (1997) Principle of formation of electrolytic water. Hoshizaki Electic Co., Ltd., Sakae, Toyoake, Aichi, Japan

    Google Scholar 

  • Bari ML, Sabina Y, Isobe S et al (2003) Effectiveness of electrolyzed acidic water in killing Escherichia coli O 157:H7, Salmonella Enteritidis, and Listeria monocytogenes on the surfaces of tomatoes. J Food Protect 66(4):542–548

    Article  CAS  Google Scholar 

  • Campus M (2010) High pressure processing of meat, meat products and seafood. Food Eng Rev 2(4):256–273

    Article  Google Scholar 

  • Cao W, Zhu ZW, Shi ZX et al (2009) Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. Int J Food Microbiol 130(2):88–93

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Shang Y, Shi Z et al (2009) Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. J Food Eng 91(4):582–586

    Article  CAS  Google Scholar 

  • Cui Y, Lin XD, Kang ML et al (2016) Advances in application of ultra high pressure for preservation and processing of aquatic products. J Food Sci 37(21):291–299

    Google Scholar 

  • Deza M, Araujo M, Garrido M (2007) Efficacy of neutral electrolyzed water to inactivate Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus on plastic and wooden kitchen cutting boards. J Food Protect 70(1):102–108

    Article  CAS  Google Scholar 

  • Ding T, Rahman SME, Purev U et al (2010) Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J Food Eng 97(4):497–503

    Article  Google Scholar 

  • Ding T, Xuan XT, Liu DH et al (2015a) Electrolyzed water generated using a circulating reactor. Int J Food Eng 11(1):79–84

    Article  CAS  Google Scholar 

  • Ding T, Ge Z, Shi J et al (2015b) Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT-Food Sci Technol 60(2):1195–1199

    Article  CAS  Google Scholar 

  • Ding T, Xuan XT, Li J et al (2016) Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 60:505–510

    Article  CAS  Google Scholar 

  • Fabrizio K, Cutter C (2003) Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. J Food Protect 66(8):1379–1384

    Article  CAS  Google Scholar 

  • Fabrizio KA, Sharma RR, Demirci A et al (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella on poultry. Poultry Sci 81:1598–1605

    Article  CAS  Google Scholar 

  • Forghani F, Park JH, Oh DH (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34

    Article  CAS  PubMed  Google Scholar 

  • Graça A, Abadias M, Salazar M et al (2011) The use of electrolyzed water as a disinfectant for minimally processed apples. Postharvest Biol Technol 61(2–3):172–177

    Article  CAS  Google Scholar 

  • Hao J, Qiu S, Li H et al (2012) Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. Int J Food Microbiol 155(3):99–104

    Article  CAS  PubMed  Google Scholar 

  • Hao XX, Li BM, Zhang Q et al (2013) Disinfection effectiveness of slightly acidic electrolysed water in swine barns. J Appl Microbiol 115:703–710

    Article  CAS  PubMed  Google Scholar 

  • Hricova D, Stephan R, Zweifel C (2008) Electrolyzed water and its application in the food industry. J Food Protect 71(9):1934–1937

    Article  CAS  Google Scholar 

  • Hsu SY (2003) Effect of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator. J Food Eng 60:460–473

    Article  Google Scholar 

  • Hsu SY (2005) Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water. J Food Eng 66:171–176

    Article  Google Scholar 

  • Hsu S, Kao H (2004) Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water. J Food Eng 65:465–471

    Article  Google Scholar 

  • Hsu GSW, Hsia CW, Hsu SY (2015) Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater. J Food Drug Anal 23(4):729–734

    Article  CAS  PubMed  Google Scholar 

  • Huang YR, Hung YC, Hsu SY et al (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345

    Article  CAS  Google Scholar 

  • Issa-Zacharia A, Kamitani Y, Tiisekwa A et al (2010) In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water. J Biosci Bioeng 110(3):308–313

    Article  CAS  PubMed  Google Scholar 

  • Issa-Zacharia A, Kamitani Y, Miwa N et al (2011) Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control 22:601–607

    Article  CAS  Google Scholar 

  • Jadeja R, Hung YC (2014) Efficacy of near neutral and alkaline pH electrolyzed oxidizing water to control Eschericchia coli O 157:H7 and Salmonella typhimurium DT 104 from beef hides. Food Control 41:17–20

    Article  CAS  Google Scholar 

  • Jeong J, Kim JY, Cho M et al (2007) Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere 67(4):652–659

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Kim C, Yoon J (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res 43(4):895–901

    Article  CAS  PubMed  Google Scholar 

  • Keskinen L, Burke A, Annous BA (2009) Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves. Int J Food Microbiol 132:134–140

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung YC (2012) Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone. J Food Sci 77(4):M206–M211

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Hung YC, Brackett RE (2000) Roles of oxidation–reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Protect 63(1):19–24

    Article  CAS  Google Scholar 

  • Kiura H, Sano K, Morimatsu S et al (2002) Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. J Microbiol Method 49(3):285–293

    Article  CAS  Google Scholar 

  • Koide S, Takeda JI, Shi J et al (2009) Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20:294–297

    Article  CAS  Google Scholar 

  • Koide SJ, Shitanda D, Note M et al (2011) Effects of mildly heated, slightly acidic electrolyzed water on the disinfection and physicochemical properties of sliced carrot. Food Control 22(3):452–456

    Article  CAS  Google Scholar 

  • Len SV, Hung YC, Erickson M et al (2000) Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. J Food Protect 63:1534–1537

    Article  CAS  Google Scholar 

  • Len SV, Hung YC, Chung D (2002) Effects of storage conditions and pH on chlorine loss on electrolyzed oxidizing (EO) water. J Agr Food Chem 50:209–212

    Article  CAS  Google Scholar 

  • Li J, Suo YJ, Liao XY et al (2017a) Analysis of Staphylococcus aureus cell viability, sublethal injury and death induced by synergistic combination of ultrasound and mild heat. Ultrason Sonoche 39:101–110

    Article  CAS  Google Scholar 

  • Li J, Ding T, Liao XY et al (2017b) Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrason Sonoche 38:711–719

    Article  CAS  Google Scholar 

  • Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. J Food Eng 78(4):1326–1332

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2008) Electrochemical alternatives for drinking water disinfection. Angew Chem Int Edit 47(11):1998–2005

    Article  CAS  Google Scholar 

  • McCarthy S, Burkhardt W (2012) Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control 24(1):214–219

    Article  CAS  Google Scholar 

  • Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26(6):610–617

    Article  CAS  PubMed  Google Scholar 

  • Nagamatsu Y, Chen KK, Tajima K et al (2002) Durability of bactericidal activity in electrolyzed neutral water by storage. Dent Mater J 21(2):93–104

    Article  PubMed  Google Scholar 

  • Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    Article  CAS  PubMed  Google Scholar 

  • Pangloli P, Hung YC (2013) Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Food Control 32(2):626–631

    Article  CAS  Google Scholar 

  • Park H, Hung YC, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91:13–18

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Alexander E, Taylor GA et al (2009) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26(4):386–390

    Article  CAS  PubMed  Google Scholar 

  • Quan Y, Choi KD, Chung D et al (2010) Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) against Vibrio vulnificus and Vibrio parahaemolyticus. Int J Food Microbiol 136(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Ding T, Oh DW (2010a) Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21(10):1383–1387

    Article  CAS  Google Scholar 

  • Rahman SME, Jin YG, Oh DW (2010b) Combined effects of alkaline electrolyzed water and citric acid with mild heat to control microorganisms on cabbage. J Food Sci 75:M111–M115

    Article  CAS  PubMed  Google Scholar 

  • Rahman SME, Park JY, Song KY et al (2011) Effects of slightly acidic low concentration electrolyzed water on microbiological, physicochemical, and sensory quality of fresh chicken breast meat. J Food Sci 71(1):M35–M41

    Article  CAS  Google Scholar 

  • Rahman SME, Park JH, Wang J et al (2012) Stability of low concentration electrolyzed water and its sanitization potential against foodborne pathogens. J Food Eng 113(4):548–553

    Article  Google Scholar 

  • Rahman SME, Wang J, Oh DH (2013) Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 30(1):176–183

    Article  CAS  Google Scholar 

  • Rahman SME, Khan I, Oh DH (2016) Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci Food Saf 15:471–490

    Article  Google Scholar 

  • Ramos B, Miller FA, Brandao TRS et al (2013) Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg 20:1–15

    Article  CAS  Google Scholar 

  • Robinson G, Thorn R, Reynolds D (2012) The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions. Int J Mol Sci 14(1):457–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma RR, Demirci A (2003) Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water. Int J Food Microbiol 86:231–237

    Article  CAS  PubMed  Google Scholar 

  • Sun JL, Zhang SK, Chen JY et al (2012) Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 58(4):448–454

    Article  CAS  PubMed  Google Scholar 

  • Tkhawkho L, Jackson K, Nitzan O et al (2017) Destruction of clostridium difficile spores colitis using acidic electrolyzed water. Am J Infect Control 45(1):1053

    Article  PubMed  Google Scholar 

  • Toepfl S, Mathys A, Heinz V et al (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22(4):405–423

    Article  CAS  Google Scholar 

  • Walker SP, Demirci A, Graves RE et al (2005) Cleaning milking systems using electrolyzed oxidizing water. Trans ASAE 48(5):1827–1833

    Article  Google Scholar 

  • Wan J, Coventry J, Swiergon P et al (2009) Advances in innovative processing technologies for microbial inactivation and enhancement of food safety-pulsed electric field and low-temperature plasma. Trends Food Sci Technol 20(9):414–424

    Article  CAS  Google Scholar 

  • Wang JJ, Sun WS, Jin MT et al (2014a) Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment. Int J Food Microbiol 179:50–56

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Zhang ZH, Li JB et al (2014b) Modeling Vibrio parahaemolyticus inactivation by acidic electrolyzed water on cooked shrimp using response surface methodology. Food Control 36(1):273–279

    Article  CAS  Google Scholar 

  • White GC (1998) Chemistry of chlorination. In: Handbook of chlorination and alternative disinfectants. Wiley, New York

    Google Scholar 

  • Xuan XT, Wang MM, Ahn J et al (2016) Storage stability of slightly acidic electrolyzed water and circulating electrolyzed water and their property changes after application. J Food Sci 81(3):E610–E617

    Article  CAS  PubMed  Google Scholar 

  • Xuan XT, Fan YF, Ling JG et al (2017) Preservation of squid by slightly acidic electrolyzed water ice. Food Control 73:1483–14893

    Article  CAS  Google Scholar 

  • Zhang YQ, Wu QP, Zhang JM et al (2011a) Effects of ozone on membrance permeability and ultrastructure in Pseudomonas aeruginosa. J Appl Microbiol 111(4):1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Lu ZH, Li YY et al (2011b) Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water. Food Control 22(5):792–796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoting Xuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Zhejiang University Press, Hangzhou

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xuan, X., Ling, J. (2019). Generation of Electrolyzed Water. In: Ding, T., Oh, DH., Liu, D. (eds) Electrolyzed Water in Food: Fundamentals and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6_1

Download citation

Publish with us

Policies and ethics