Skip to main content

Abstract

The fruit provides a proper environment for seed production, protection and dispersal. Fruit set and development usually takes place only after pollination and fertilization, and fertilized fruits contain seeds. The development of fruits without pollination and fertilization is called parthenocarpy. Parthenocarpic fruits are seedless. Therefore, seedless fruits represent the uncoupling of the genetic programme for fruit development from the one ensuring seed production and, consequently, its evolutionary function. Parthenocarpy is interesting also for applied reasons. It offers the possibility of improving fruit quality and productivity in many crop plants grown for their fruits. Environmental conditions adverse for pollen production, germination and fertilization negatively affect fruit production and quality. Thus, parthenocarpy is considered the most efficient way to produce fruits under environmental conditions adverse for pollination and/or fertilization. Moreover, in some crops the absence of seeds can improve fruit quality (e.g., eggplant), while in other plant species (e.g., Actinidia) parthenocarpy might also improve productivity because pollinator plants are no longer needed. Lastly, parthenocarpy allows early fruit production and harvest. Thus, parthenocarpy represents a tool to rationalize and improve fruit quality and production in the plant species grown for their fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acciarri, N., Ferrari, V., Vitelli, G., Ficcadenti, N., Pandolfini, T., Spena, A. and Rotino, G.L. (2000) Effetto della partenocarpia in ibridi di pomodoro geneticamente modificati, Inf. Agrario 4, 117–121.

    Google Scholar 

  • Bartel, B. and Fink, G.R. (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates, Science 268, 1745–1748.

    Article  PubMed  CAS  Google Scholar 

  • Barg, R. and Salts,Y. (1996) Method for the induction of genetic parthenocarpy in plants, Patent App. N° 1L19960117139; Patent N° W09730165.

    Google Scholar 

  • Bouquet, A. and Danglot, Y. (1996) Inheritance of seedlessness in grapevine (Vitis viniftra L.), Vitis 35, 35–42.

    Google Scholar 

  • Carmi, N., Salts, N., Shabtai, S., Pilowsky, M., Barg, R. and Dedicova, B. (1997) Transgenic parthenocarpy due to specific over-sensitization of ovary to auxin, Acta Hortic. 447, 579–581.

    Google Scholar 

  • Donzella., G., Spena, A. and Rotino, G.L. (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production, MoL Breed. 6, 79–86.

    Article  Google Scholar 

  • Ficcadenti, N., Sestili, S., Pandolfini, T., Cirillo, C., Rotino, G.L. and Spena, A. (1999) Genetic engineering of parthenocarpic fruit development in tomato, Mol. Breed. 5, 463–470.

    Article  Google Scholar 

  • Fitting, H. (1909) Die beeinflussung der Orchideenbluten durch die Bestaubung und durch andere Umstande, Z. Bot. 1, 1–86.

    Google Scholar 

  • Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. and Fink, G.R. (1999) Ploidy regulation of gene expression, Science 285, 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Gillapsy, G., Ben-David, H. and Grulssem,W. (1993) Fruits: A developmental perspective, Plant Cell 5, 1439–1451.

    Google Scholar 

  • Glass, N.L. and Kosuge, T. (1988) Role of indoleacetic acid-lysine synthase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. Savastanoi, Bacteriol. 170, 2367–2373.

    CAS  Google Scholar 

  • Griggs, W.H. and Iwakiri, B.T. (1954) Pollination and parthenocarpy in the production of “Bartlett” pears in California, Hilgardia 22, 643–678.

    Google Scholar 

  • Grossniklaus, U. and Vielle-Calzada, J.P. (1998) Seed specific polycomb group gene and methods of use for same. Patent Application Number USI9980061769. PN W09953083.

    Google Scholar 

  • Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A. and Gagliano, W.B. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene of Arabidopsis, Science 280, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, F.G. (1939a) The cause of natural parthenocarpy, Amer. J Bot. 26, 135–138. Gustafson, F.G. (1939b) Auxin distribution in fruits and its significance in fruit development, Amer. J Bot. 26, 189–194.

    Article  CAS  Google Scholar 

  • Gustafson, F.G. (1942) Parthenocarpy: Natural and artificial, Bot Rev. 8, 599–654.

    Article  CAS  Google Scholar 

  • Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants, Plant Mol. Biol. 17, 567–579.

    Article  PubMed  CAS  Google Scholar 

  • Hennart, J.W. (1996) Sélection de l’aubergine, PHM Rev. Hortic. 374, 37–40.

    Google Scholar 

  • Kihara, H. (1951) Triploid watermelon, Proc Amer. Soc. Hortic. Sci. 58, 217–230.

    Google Scholar 

  • Kim, I.S., Okubo, H. and Fujieda, K., (1992) Endogenous level of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.), Sci. Hortic. 52, 1–8.

    Article  CAS  Google Scholar 

  • Kosuge,T., Heskett, M.G. and Wilson, E.E. (1966) Microbial synthesis and degradation of the indole-3-acetic acid, J. BioL Chem. 241, 3738–3744.

    Google Scholar 

  • Kulkarni, V. and Rameshwar, A. (1978) Natural and gibberellic acid induced parthenocarpy in mango: cv. Thambva, Curr. Sci. 47, 353–355.

    CAS  Google Scholar 

  • Ledbetter, C.A. and Burgos L. (1994) Inheritance of stenospermocarpic seedlessness in Vitis vinifera L., J Hered. 85, 157–160.

    Google Scholar 

  • Lee, T.H., Sugiyama, A., Takeno, K., Ohno, H. and Yamaki, S. (1997) Changes in content of indole-3-acetic acid and in activities of sucrose metabolizing enzyme during fruit growth in eggplant (Solanum melongena L.), J Plant Physiol. 150, 292–296.

    Article  CAS  Google Scholar 

  • Li, Y. (1997) Transgenic seedless fruit and methods, Patent Appl.N° US1997060045725; W09849888A I.

    Google Scholar 

  • Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize, Genetics 107, 103–115.

    PubMed  CAS  Google Scholar 

  • Lin, S., George W.L. and Splittstoesser W.F. (1984) Expression and inheritance of partenocarpy in “Severianin” tomato, J. Hered. 75, 62–66.

    Google Scholar 

  • Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G. and Guilfoyle, T.J. (1994) Soybean GH3 promoter contains multiple auxin-inducible elements, Plant Cell 6, 645–657.

    PubMed  CAS  Google Scholar 

  • Lukyanenko, A.N. (1991) Parthenocarpy in tomato, in G. Kalloo (ed.), Genetic Improvement of Tomato. Monograph on Theoretical and Applied Genetics, Springer Verlag, Berlin, pp. 167–175.

    Chapter  Google Scholar 

  • Ma, H., Yanofsky, M.F. and Meyerowitz, EM (1991) AGL1–AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev. 5, 484495.

    Google Scholar 

  • Mapelli, S., Bricchi, D., Cantoni, M. and Soressi, G.P. (1994) Gene pat-2 e livelli di fitoregolatori endogeni, allegagione e caratteristiche produttive in un ibrido di pomodoro, Atti II Giornate Scientifiche SOI, S. Benedetto del Tronto, 22–24 Giugno, pp. 213–214.

    Google Scholar 

  • Mazzucato, A., Taddei, A. R. and Soressi, G. P. (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development, Development 125, 107–114.

    PubMed  CAS  Google Scholar 

  • Nitsch, J.P. (1950) Growth and morphogenesis of the strawberry as related to auxin, Amer. J. Bot. 37, 211–215.

    Article  CAS  Google Scholar 

  • Nitsch, J.P. (1970) Hormonal factors in growth and development, in. A.C. Hulme (ed.), The Biochemistry of Fruits and their Products. Vol. II, Academic Press, London, pp. 427–472.

    Google Scholar 

  • Nyeki, J., Soltesz, M. and Ivancsics, J. (1998) Natural tendency to parthenocarpy of pear. Acta Hortic. 475, 367–377.

    Google Scholar 

  • Ortiz, R. and Vuylsteke, D. (1995) Effect of the parthenocarpy gene P1 and ploidy on fruit and bunch traits of plantain-banana hybrids, Heredity 75, 460–465.

    Article  Google Scholar 

  • Paddon, C.J. and Hartley, R.W. (1987) Expression of Bacillus amyloliquefaciens extracellular ribonuclease (barnase) in Escherichia coli following an inactivating mutation, Gene 53, 11–9.

    Google Scholar 

  • Philouze, J. (1983) Parthenocarpie naturelle chez la tomate, I. Rev. Bibliograph. Agro. 3, 611620.

    Google Scholar 

  • Philouze, J. (1985) Parthenocarpie naturelle chez la tomate. II. Etude d’une collection variètale, Agronomie 5, 47–54.

    Article  Google Scholar 

  • Philouze, J., Buret, M., Duprat, F., Nicolas-Grotte and Nicolas, J. (1988) Caractèristiques agronomiques et physico-chimiques de lignèes de tomate isogèniques, sauf pou gène pat-2 de parthènocarpie, dans trois types varietaux, en cultures de printemps, sous serre plastique très peu chauffèe, Agronomie 8, 817–828.

    Google Scholar 

  • Pike, L.M. and Peterson, C.E. (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.), Euphytica 18, 101–105.

    Google Scholar 

  • Robinson, R.W., Cantliffe, D.J. and Shannon, S. (1971) Morphactin induced parthenocarpy in the cucumber, Science 171, 1251–1252.

    Article  PubMed  CAS  Google Scholar 

  • Rotino, G.L., Sommer, H., Saedler, H. and Spena, A. (1996) Methods for producing parthenocarpic or female sterile transgenic plants and methods for enhancing fruit setting and development, Priority N° EPO 96120645.5.

    Google Scholar 

  • Rotino, G.L., Perri, E., Zottini, M., Sommer, H. and Spena, A. (1997) Genetic engineering of parthenocarpic plants, Nature Biotech. 15, 1398–1401.

    Google Scholar 

  • Salts, Y.R., Wachs, R., Gruissem, W. and Barg, R. (1991) Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit, Plant Mol. Biol. 17, 149–150.

    Article  PubMed  CAS  Google Scholar 

  • Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes, Plant Cell 7, 721–733.

    PubMed  CAS  Google Scholar 

  • Schwabe, W.W. and Mills, J.J. (1981) Hormones and parthenocarpic fruit set: A literature survey, Hortic. Abstr. 51, 661–698.

    Google Scholar 

  • Shozo, M. and Keita, S. (1997) Creation of seedless fruit, Patent AppL N° JPI9970279331; PN: JP I 1103705.

    Google Scholar 

  • Szectman, A.D., Saltz, Y., Carmi, N., Shabtai, S., Pilowsky, M. and Barg, R. (1997) Seedless fruit setting in response to NAM treatment of transgenic tomato expressing the iaaH gene specifically in the ovary, Acta Hortic. 447, 597–598.

    Google Scholar 

  • Tomes,D.T., Miller, P.D. and Bensen, R.I. (1996a) Transgenic methods and compositions for producing parthenocarpic fruits and vegetables, US Patent Appt N° 641479. PN:US5877400.

    Google Scholar 

  • Tomes, D.T., Huang, B. and Miller, P.D. (1996b) Genetic constructs and methods for producing fruits with very little or diminished seed, US Patent AppL N° 636283. PN: US5773697.

    Google Scholar 

  • Tobutt, K.R. (1994) Combining apetalous parthenocarpy with columnar growth habit in apple, Euphytica 77, 51–54.

    Article  Google Scholar 

  • Tsao, T. (1980) Growth substances: Role in fertilization and sex expression, in F. Skoog (ed.), Plant Growth Substances, Spring-Verlag, N.Y., pp. 345–348.

    Google Scholar 

  • Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989a). Genetics of parthenocarpy in tomato under a low temperature regime: I. Line RP 75/59, Euphytica 41, 1–8.

    Article  Google Scholar 

  • Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989b). Genetics of parthenocarpy in tomato under a low temperature regime: II. Cultivar “Severianin”, Euphytica 41, 9–15.

    Article  Google Scholar 

  • Weiss, J., Nerd, A. and Mirzahi, Y. (1993) Vegetative parthenocarpy in the cactus pear Opuntia ficus-indica (1.)Mill., Ann. Bot. 72: 521–526.

    Article  Google Scholar 

  • Yamada, T., Palm, C.J., Brooks, B. and Kosuge, T. (1985) Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA, Proc. Natl. Acad. Sci. USA 82, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, S. (1934) Parthenocarpy caused by the stimulus of pollination in some plants of Solanaceae, Agric. Hortic. 9, 647–656.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spena, A., Rotino, G.L. (2001). Parthenocarpy. In: Bhojwani, S.S., Soh, WY. (eds) Current Trends in the Embryology of Angiosperms. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1203-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1203-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5679-5

  • Online ISBN: 978-94-017-1203-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics