Skip to main content

Structure and Marker Mode of The Primary Electron Donor State Absorption of Photosynthetic Bacteria: Hole Burned Spectra

  • Conference paper
Perspectives in Photosynthesis

Abstract

Structured photochemical hole burned spectra are presented for P870 and P960 of the reaction centers (RC) of Rhodobacter sphaeroides and Rhodopseudomonas viridis. A special pair marker mode (ωsp) Franck-Condon progression is identified for both P870 and P960. Zero-phonon holes are reported which yield P870* and P960* decay times in good agreement with the time domain values. This agreement suggests that vibrational thermalization occurs prior to the primary charge separation process. The theory of Hayes and Small [1], embellished for the marker mode progression, is shown to account for the primary donor state absorption and burn-wavelength dependent hole spectra. Site excitation energy selection is used to establish correlation between a higher energy RC state and P* for both bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayes, J.M. and Small, G.J. (1986) ‘Photochemical hole burning and strong electronphonon coupling: primary donor states of reaction centers of photosynthetic bacteria’, J. Phys. Chem., 90, 4928–4931.

    Article  CAS  Google Scholar 

  2. Deisenhofen J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) ‘X-ray structure analysis of a membrane protein complex: electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis’, J. Mol. Biol., 180, 385–398.

    Article  Google Scholar 

  3. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) ‘Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis’, Nature (London), 318, 618–624.

    Article  Google Scholar 

  4. Michel, H., Epp, O. and Deisenhofer, J. (1986) ‘Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis’, EMBO J., 5, 2445–2451.

    PubMed  CAS  Google Scholar 

  5. Chang, C.H., Tiede, D., Tang, J., Smith, U. and Norris, J. (1986) ‘Structure of Rhodopseudomonas sphaeroides R-26 reaction center’, FEBS Lett., 205, 82–86.

    Article  PubMed  CAS  Google Scholar 

  6. Allen, J.P., Feher, G., Yeates, T.O., Rees, D.C., Deisenhofer, J., Michel, H. and Huber, R. (1986) ‘Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction’, Proc. Natl. Acad. Sci. USA, 83, 8589–8593.

    Article  PubMed  CAS  Google Scholar 

  7. Yeates, T.O., Komiya, H., Chirino, A., Rees, D.C., Allen, J.P. and Feher, G. (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1:protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions’, Proc. Natl. Acad. Sci. USA, 85, 7993–7997.

    Article  PubMed  CAS  Google Scholar 

  8. Kirmaier, C. and Holten, D. (1987) ‘Primary photochemistry of reaction centers from the photosynthetic purple bacteria’, Photosyn. Res., 13, 225–260.

    Article  CAS  Google Scholar 

  9. Budil, D.E., Gast, P., Chang, C.H., Schiffer, M. and Nords, J. (1987) ‘Three-dimensional x-ray crystallography of membrane proteins: insight into electron transfer’, Ann. Rev. Phys. Chem., 38, 561–583.

    Article  CAS  Google Scholar 

  10. Warshel, A. and Parson, W.W. (1987) ‘Spectroscopic properties of photosynthetic reaction centers. 1. Theory’, J. Am. Chem. Soc., 109, 6143–6152.

    Article  CAS  Google Scholar 

  11. Scherer, P.O.J. and Fischer, S. (1989) ‘Long-range electron transfer within the hexamer of the photosynthetic reaction center Rhodopseudomonas viridis’, J. Phys. Chem., 93, 1633–1637.

    Article  CAS  Google Scholar 

  12. Boxer, S.G., Lockhart, D.J. and Middendorf, T.R. (1986) ‘Photochemical hole burning in photosynthetic reaction centers’, Chem. Phys. Lett., 123, 476–482.

    Article  CAS  Google Scholar 

  13. Boxer, S.G., Middendorf, T.R. and Lockhart, D.J. (1986) ‘Reversible photochemical hole burning in Rhodopseudomonas viridis reaction centers’, FEBS Lett., 200, 237–241.

    Article  CAS  Google Scholar 

  14. Meech, S.R., Hoff, A.J. and Wiersma, D.A. (1986) ‘Role of charge-transfer states in bacterial photosynthesis’, Proc. Natl. Acad. Sci. USA, 83, 9464–9468.

    Article  PubMed  CAS  Google Scholar 

  15. Won, Y. and Friesner, R.A. (1988) ‘Theoretical studies of photochemical hole burning in photosynthetic bacterial reaction centers’, J. Phys. Chem., 92, 2214–2219.

    Article  CAS  Google Scholar 

  16. Won, Y. and Friesner, R.A. (1989) ‘Comment: Theoretical studies of photochemical hole burning in photosynthetic bacterial reaction centers’, J. Phys. Chem., 93,1007.

    Article  CAS  Google Scholar 

  17. Hayes, J.M., Gillie, J.K., Tang, D. and Small, G.J. (1988) ‘Theory for spectral hole burning of the primary electron donor state of photosynthetic reaction centers’, Biochim. Biophys. Acta, 932, 287–305.

    Article  CAS  Google Scholar 

  18. Tang, D., Jankowiak, R., Gillie, J.K., Small, G.J. and Tiede, D. (1988) ‘Structured holeburned spectra of reaction centers of Rhodopseudomonas viridis’ J. Phys. Chem., 92, 4012–4015.

    Article  CAS  Google Scholar 

  19. Tang, D., Jankowiak, R., Small, G.J. and Tiede, D. (1989) ‘Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis’, Chem. Phys., 131, 99–113.

    Article  CAS  Google Scholar 

  20. Vermeglio, A. and Paillotin, G. (1982) ‘Structure of Rhodopseudomonas viridis reaction centers absorption and photoselection at low temperature’, Biochim. Biophys. Acta, 681, 32–40.

    Article  CAS  Google Scholar 

  21. Fleming, G.R., Martin, J.L. and Breton, J. (1988) ‘Rules of primary electron transfer in photosynthetic reaction centers and their mechanistic implications’, Nature (London), 333, 190–193.

    Article  CAS  Google Scholar 

  22. Breton, J., Martin, J.L., Fleming, G.R. and Lambry, J.-C. (1988) ‘Low-temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria’, Biochem., 27, 8276–8284.

    Article  CAS  Google Scholar 

  23. Gillie, J.K., Small, G.J. and Golbeck, J.H. (1989) ‘Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200)’, J. Phys. Chem., 93, 1620–1627.

    Article  CAS  Google Scholar 

  24. Renge, I., Mauring, K. and Avarmaa, R. (1987) ‘Site-selection optical spectra of bacteriochlorophyll and bacteriopheophytin in frozen solutions’, J. Lumin., 37, 207–214.

    Article  CAS  Google Scholar 

  25. Lee, I.-J., Hayes, J.M. and Small, G.J. (1989) ‘Hole and anti-hole profiles in non-photochemical hole burned spectra’, J. Chem. Phys., to be published.

    Google Scholar 

  26. Angerhofer, A. (1987) ‘Optische und ODMR-untersuchungen an antennen und reaktionszentren photosynthetisierender bakterien’, thesis (Ph.D.), Universitat Stuttgart, Stuttgart, West Germany.

    Google Scholar 

  27. Maslov, V.G., Klevanik, A.V., Ismailov, M.A. and Shuvalov, V.A. (1983) ‘Nature of long-wave absorption band of Rhodopseudomonas viridis reaction centers in relation to primary charge separation’, Dokl. Akad. SSSR, 269, 1217–1221.

    CAS  Google Scholar 

  28. Hayes, J.M., Fearey, B.L., Carter, T.P. and Small, G.J. (1986) ‘Nonphotochemical hole burning — versatility and theoretical status’, Int. Rev. Phys. Chem., 5, 175–184.

    Article  CAS  Google Scholar 

  29. Jortner, J. (1980) ‘Dynamics of electron transfer in bacterial photosynthesis’, Biochim. Biophys. Acta, 594, 193–230.

    PubMed  CAS  Google Scholar 

  30. Bixon, M. and Jortner, J. (1982) ‘Quantum effects on electron-transfer processes’, Faraday Discuss. Chem. Soc., 74, 17–29.

    Google Scholar 

  31. Meech, S.R., Hoff, A.J. and Wiersma, D.A. (1985) ‘Evidence for a very early intermediate in bacterial photosynthesis. A photon-echo and hole-burning study of the primary donor band in Rhodopseudomonas sphaeroides’, Chem. Phys. Lett., 121, 287–292.

    Article  CAS  Google Scholar 

  32. Johnson, S.G. and Small, G.J. (1989) ‘Spectral hole burning of a strongly exciton-coupled bacteriochlorophyll a antenna complex’, Chem. Phys. Lett., 155, 371–375.

    Article  CAS  Google Scholar 

  33. Johnson, S.G., Tang, D., Jankowiak, R., Hayes, J.M., Small, G.J. and Tiede, D. (1989) ‘Polarized photochemical hole burning of reaction centers of Rhodopseudomonas viridis and Rhodobacter sphaeroides’, to be published.

    Google Scholar 

  34. Breton, J., Martin, J.-L., Migus, A., Antonetti, A. and Orszag, A. (1986) ‘Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis’, Proc. Natl. Acad. Sci. USA, 83, 5121–5125.

    Article  PubMed  CAS  Google Scholar 

  35. Martin, J.-L., Breton, J., Hoff, A.J., Migus, A. and Antonetti, A. (1986) ‘Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ±.2 psec.’ Proc. Natl. Acad. Sci. USA, 83, 957–961.

    Article  PubMed  CAS  Google Scholar 

  36. Jankowiak, R., Tang, D., Small, G.J. and Seibert, M. (1989) ‘Transient and persistent hole burning of the reaction center of photosystem II’, J. Phys. Chem., 93, 1649–1654.

    Article  CAS  Google Scholar 

  37. Michel, H. and Deisenhofer, D. (1986) ‘X-ray diffraction studies on a crystalline bacterial photosynthetic reaction center: a progress report and conclusions on the structure of photosystem II reaction centers’, in A.C. Staehelin and C.J. Arntzen (eds.), Encyclopedia of Plant Physiology: Photosynthesis III, Springer-Verlag, Berlin, pp. 371–381.

    Google Scholar 

  38. Michel, H. and Deisenhofer, J. (1987) ‘The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis’, Chemica Scripta, 27B, 173–180.

    CAS  Google Scholar 

  39. Trebst, A. (1986) ‘The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane’, Z. Naturforsch, 41C, 240–245.

    Google Scholar 

  40. Nanba, O. and Satoh, K. (1987) ‘Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559’, Proc. Natl. Acad. Sci. USA, 84, 109–112.

    Article  PubMed  CAS  Google Scholar 

  41. Also, experiments performed on the undiluted sample yielded PHB spectra that agree with the ΔT spectra obtained earlier [18,19], yet result in ΔA spectra that are consistent with those presented here. The feature in Fig. 3 (which should be labeled as a ΔT spectrum) of Tang, D., Jankowiak, R., Small, G.J. and Tiede, D. (1989) ‘Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis’, Chem. Phys., 131, 99–113 assigned to a CT state is actually the <Inline></Inline>satellite hole.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Tang, D., Johnson, S.G., Jankowiak, R., Hayes, J.M., Small, G.J., Tiede, D.M. (1990). Structure and Marker Mode of The Primary Electron Donor State Absorption of Photosynthetic Bacteria: Hole Burned Spectra. In: Jortner, J., Pullman, B. (eds) Perspectives in Photosynthesis. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0489-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0489-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6706-5

  • Online ISBN: 978-94-009-0489-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics