Skip to main content

MHD Simulations of the Global Solar Corona and the Solar Wind

  • Chapter
  • First Online:
The Sun, the Solar Wind, and the Heliosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 4))

Abstract

We describe the latest applications of our global three-dimensional magnetohydrodynamic (MHD) model of the solar corona and the solar wind. The model uses boundary conditions based on observed photospheric magnetic fields. It has been used in the simplified, “polytropic” approximation of the energy equation to study the geometrical and topological properties of the magnetic field (e.g., the location and evolution of corona holes, the reproduction of streamer structure, the location of the heliospheric current sheet). However, this approximation does not reproduce the density and temperature contrasts between open and closed-field regions and does not address data from EUV and X-ray emission. Our improved MHD model that includes energy transport (radiative losses, anisotropic thermal conduction, and coronal heating) in the transition region and solar corona is capable of reproducing many emission properties as observed by SoHO and Hinode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More images and animations are available from our web site: http://www.predsci.com/corona/jul09eclipse/

References

  • Antiochos SK, DeVore CR, Karpen JT, Mikić Z (2007) Structure and dynamics of the Sun’s open magnetic field. ApJ 671:936–946. doi:10.1086/522489

    Article  Google Scholar 

  • Cohen O, Sokolov IV, Roussev II, Arge CN, Manchester WB, Gombosi TI, Frazin RA, Park H, Butala MD, Kamalabadi F, Velli M (2007) A semiempirical magnetohydrodynamical model of the solar wind. ApJ 654:L163–L166. doi:10.1086/511154

    Article  Google Scholar 

  • Crooker NU, Gosling JT, Kahler SW (2002a) Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J Geophys Res (Space Phys) 107:3–1

    Google Scholar 

  • Crooker NU, Gosling JT, Kahler SW (2002b) Reducing heliospheric magnetic flux from coronal mass ejections without disconnection. J Geophys Res (Space Phys) 107:1028–. doi:10.1029/2001JA000236

    Article  Google Scholar 

  • Crooker NU, Larson DE, Kahler SW, Lamassa SM, Spence HE (2003) Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts. Geophys. Res. Lett.30(12):21-1 to 21-4 1619. doi:10.1029/2003GL017036

    Article  Google Scholar 

  • Fisk LA, Zurbuchen TH, Schwadron NA (1999) On the coronal magnetic field: consequences of large-scalemotions. ApJ 521:868–877

    Article  Google Scholar 

  • Jacques SA (1977) Momentum and energy transport bywaves in the solar atmosphere and solar wind. ApJ 215:942–951

    Article  Google Scholar 

  • Klimchuk JA (2006) On solving the coronal heating problem. Sol Phys 234:41–77. doi:10.1007/s11207-006-0055-z

    Article  Google Scholar 

  • Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ (1999) Magnetohydrodynamicmodeling of the solar corona during Whole Sun Month. J Geophys Res 104:9809–9830

    Article  Google Scholar 

  • Lionello R, Linker JA, Mikić Z (2001) Including the transition region in models of the large-scale solar corona. ApJ 546:542–551

    Article  Google Scholar 

  • Lionello R, Linker JA, Mikić Z (2009) Multispectral emission of the Sun during the first Whole Sun Month: magnetohydrodynamic simulations. ApJ 690:902–912. doi:10.1088/0004-637X/690/1/902

    Article  Google Scholar 

  • Lundquist LL, Fisher GH, McTiernan JM, Régnier S (2004) In: Walsh RW, Ireland J, Danesy D, Fleck B (eds) Using synthetic emission images to constrain heating parameters. ESA SP-575: SOHO 15 coronal heating. ESA, Noordwijk, pp 306–

    Google Scholar 

  • Mikić Z, Linker JA (1996) The large-scale structure of the solar corona and inner heliosphere. In: Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M (eds) Solarwind eight, Proceedings of the eighth international solarwind conference, American Institute of Physics conference proceedings 382. American Institute of Physics, Woodbury, New York, 1996, pp 104–107

    Google Scholar 

  • Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A (1999) Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6:2217–2224

    Article  Google Scholar 

  • Owens MJ, Crooker NU (2007) Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget. J Geophys Res (Space Phys) 112:6106–+. doi:10.1029/2006JA012159

    Article  Google Scholar 

  • Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG (2006) A comparison between global solar magnetohydrodynamic and potential field source surfacemodel results. ApJ 653:1510–1516. doi:10.1086/508565

    Article  Google Scholar 

  • Roussev II, Gombosi TI, Sokolov IV, Velli M, Manchester W IV, DeZeeuw DL, Liewer P, Tóth G, Luhmann J (2003) A Three-dimensional model of the solar wind incorporating solar magnetogram observations. ApJ 595:L57–L61. doi:10.1086/378878

    Article  Google Scholar 

  • Titov VS (2007) Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. ApJ 660:863–873. doi:10.1086/512671

    Article  Google Scholar 

  • Usmanov AV (1993) A global numerical 3-D MHD model of the solar wind. Sol Phys 146:377–396

    Article  Google Scholar 

  • Usmanov AV (1995) A global 3-DMHD model of the solar wind with Alfven waves. In: Solar wind conference, pp 65–+

    Google Scholar 

  • Warren HP, Winebarger AR (2006) Hydrostatic modeling of the integrated soft X-Ray and extreme ultraviolet emission in solar active regions. ApJ 645:711–719. doi:10.1086/504075

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Lionello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lionello, R., Linker, J.A., Mikić, Z., Riley, P., Titov, V.S. (2011). MHD Simulations of the Global Solar Corona and the Solar Wind. In: Miralles, M., Sánchez Almeida, J. (eds) The Sun, the Solar Wind, and the Heliosphere. IAGA Special Sopron Book Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9787-3_10

Download citation

Publish with us

Policies and ethics