Skip to main content

Analytic Root Clustering: A Complete Algorithm Using Soft Zero Tests

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

Abstract

A challenge to current theories of computing in the continua is the proper treatment of the zero test. Such tests are critical for extracting geometric information. Zero tests are expensive and may be uncomputable. So we seek geometric algorithms based on a weak form of such tests, called soft zero tests. Typically, algorithms with such tests can only determine the geometry for “nice” (e.g., non-degenerate, non-singular, smooth, Morse, etc) inputs. Algorithms that avoid such niceness assumptions are said to be complete. Can we design complete algorithms with soft zero tests? We address the basic problem of determining the geometry of the roots of a complex analytic function f. We assume effective box functions for f and its higher derivatives are provided. The problem is formalized as the root clustering problem, and we provide a complete (δ,ε)-exact algorithm based on soft zero tests.

This paper was presented at an invited Special Session on “Computational Complexity in the Continuous World” at Computability in Europe (CiE2013), July 1-5, Milan, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batra, P.: Globally convergent, iterative path-following for algebraic equations. Math. in Computer Sci. 4(4), 507–537 (2010); Special Issue

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Book  Google Scholar 

  3. Brattka, V., Hertling, P.: Feasible real random access machines. J. of Complexity 14(4), 490–526 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dellnitz, M., Schütze, O., Zheng, Q.: Locating all the zeros of an analytic function in one complex variable. J. Comput. Appl. Math. 138(2), 325–333 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, Z., Yap, C.: Absolute approximation of the general hypergeometric functions. In: In Proc. 7th Asian Symp. on Computer Math (ASCM), December 8-10, pp. 246–249. KIAS, Seoul (2005)

    Google Scholar 

  6. Emiris, I.Z., Pan, V.Y., Tsigaridas, E.P.: Algebraic and numerical algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 3rd edn., vol. 1, ch. 17. CRC Press Inc., Boca Raton (2012)

    Google Scholar 

  7. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approximation of clusters of zeros of analytic functions. Found. Comp. Math. 5(3), 257–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Halperin, D., Fogel, E., Wein, R.: CGAL Arrangements and Their Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Hemaspaandra, L.A., Ogihara, M.: The Complexity Theory Companion. Springer (2002)

    Google Scholar 

  10. Johnson, T., Tucker, W.: Enclosing all zeros of an analytic function - a rigorous approach. J. Comput. Appl. Math. 228(1), 418–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  12. Marden, M.: The Geometry of Zeros of a Polynomial in a Complex Variable. Math. Surveys. American Math. Soc., New York (1949)

    MATH  Google Scholar 

  13. Niu, X.-M., Sakurai, T., Sugiura, H.: A verified method for bounding clusters of zeros of analytic functions. J. Comput. Appl. Math. 199(2), 263–270 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Proc. Symp. on Geometry Processing, pp. 245–254. ACM Press, New York (2004)

    Google Scholar 

  15. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. OUP (2002)

    Google Scholar 

  16. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  17. Rump, S.M.: Ten methods to bound multiple roots of polynomials. J. Computational and Applied Mathematics 156, 403–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex root isolation. In: 36th ISSAC, June 8-11, pp. 353–360. San Jose, California (2011)

    Google Scholar 

  19. Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press, Inc. (1988)

    Google Scholar 

  20. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  21. Yakoubsohn, J.-C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J. of Complexity 21(5), 652–690 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yap, C., Sharma, V., Lien, J.-M.: Towards Exact Numerical Voronoi diagrams. In: IEEE 9th Int. Symp. of Voronoi Diagrams in Sci. and Eng (ISVD), June 27-29, pp. 2–16. Rutgers U, NJ (2012); Invited Talk

    Google Scholar 

  23. Yap, C.K.: Theory of real computation according to EGC. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds.) Real Number Algorithms. LNCS, vol. 5045, pp. 193–237. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yap, C., Sagraloff, M., Sharma, V. (2013). Analytic Root Clustering: A Complete Algorithm Using Soft Zero Tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics