Skip to main content

Oracle Hypermachines Faced with the Verification Problem

  • Chapter
Computing Nature

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 7))

  • 1003 Accesses

Abstract

One of the main current issues about hypercomputation concerns the claim of the possibility of building a physical device that hypercomputes. In order to prove this claim, one possible strategy could be to physically build an oracle hypermachine, namely a device which is be able to use some extern information from nature to go beyond Turing machines limits. However, there is an epistemological problem affecting this strategy, which may be called “verification problem”. This problem raises in presence of an oracle hypermachine and it may be set out as follows: even if we were able to build such a hypermachine we would not be able to claim that it hypercomputes because it would be impossible to verify that the machine can compute a non Turing-computable function. In this paper, I propose an analysis of the verification problem in order to know whether it is a genuine problem for oracle hypermachines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M., Blum, M.: Inductive Inference and Unsolvability. The Journal of Symbolic Logic 56, 891–900 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Calude, C.S.: Algorithmic randomness, quantum physics, and incompleteness. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 1–17. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Calude, C.S., Svozil, K.: Quantum Randomness and Value Indefiniteness. Advanced Science Letters 1, 165–168 (2008)

    Article  Google Scholar 

  4. Chaitin, G.: On the Length of Programs for Computing Finite Binary Sequences. Journal of the Association for Computing Machinery 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Church, A.: On the Concept of a Random Sequence. Bulletin of the American Mathematical Society 46, 130–135 (1940)

    Article  MathSciNet  Google Scholar 

  6. Cleland, C.E.: The Concept of Computability. Theoretical Computer Science 317, 209–225 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Copeland, J.: Narrow Versus Wide Mechanism: Including a Re-Examination of Turing’s Views of the Mind-Machine Issue. The Journal of Philosophy 1, 5–32 (2000)

    Article  MathSciNet  Google Scholar 

  8. Copeland, J.: Hypercomputation. Minds and Machines 12, 461–502 (2002)

    Article  MATH  Google Scholar 

  9. Copeland, J.: Accelerating Turing Machine. Minds and Machines 12, 281–301 (2002)

    Article  MATH  Google Scholar 

  10. Copeland, J., Proudfoot, D.: Alan Turing’s Forgotten Ideas in Computer Science. Scientific American 208, 76–81 (1999)

    Google Scholar 

  11. Davies, B.: Building Infinite Machines. British Journal for the Philosophy of Science 52, 671–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis, M.: The Myth of Hypercomputation. In: Teuscher, C. (ed.) Alan Turing: The Life and Legacy of a Great Thinker, pp. 195–212. Springer, Berlin (2004)

    Google Scholar 

  13. De Leeuw, K., Moore, E.F., Shannon, C.E., Shapiro, N.: Computability by Probabilistic Machines. Automata Studies. Princeton University Press (1956)

    Google Scholar 

  14. Earman, J.: Bangs, Crunchs, Whimpers and Shrieks - Singularities and Acausalities in Relativistic Spacetimes. Oxford University Press, Oxford (1995)

    Google Scholar 

  15. Gold, M.: Limiting Recursion. The Journal of Symbolic Logic 30, 28–48 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamkins, J.D.: Infinite Time Turing Machines. Minds and Machines 12, 567–604 (2002)

    Article  Google Scholar 

  17. Hogarth, M.: Does General Relativity Allow an Observer to View an Eternity in a Finite Time? Foundations of Physics Letters 5, 173–181 (1992)

    Article  MathSciNet  Google Scholar 

  18. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A.: A Fast and Compact Quantum Random Number Generator. Review of Scientific Instruments 71, 1675–1680 (2000)

    Article  Google Scholar 

  19. Kieu, T.: Quantum Hypercomputation. Minds and Machines 12, 541–561 (2002)

    Article  MATH  Google Scholar 

  20. Leitsch, A., Schachner, G., Svozil, K.: How to Acknowledge Hypercomputation? Complex Systems 18, 131–143 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Loff, B., Costa, J.F.: Five Views of Hypercomputation. International Journal of Unconventional Computing 5, 193–207 (2009)

    Google Scholar 

  22. Martin-Löf, P.: The Definition of a Random Sequence. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matiiassevitch, Y.: Le Dixième Problème de Hilbert: son Indécidabilité. Masson, Paris (1995)

    Google Scholar 

  24. Piccinini, G.: The Physical Church-Turing Thesis: Modest or Bold? The British Journal For The Philosophy of Science 62, 773–769 (2011)

    Google Scholar 

  25. Pitowski, I.: The Pysical Church Thesis and Physical Computational Complexity. Iyyun 39, 81–99 (1990)

    Google Scholar 

  26. Shagrir, O., Pitowski, I.: Physical Hypercomputation and the Church-Turing Thesis. Minds and Machines 13, 87–101 (2003)

    Article  MATH  Google Scholar 

  27. Siegelmann, H.T.: Neural and Super-Turing Computing. Minds and Machines 13, 103–114 (2003)

    Article  MATH  Google Scholar 

  28. Stannett, M.: Computation and Hypercomputation. Minds and Machines 13, 115–153 (2003)

    Article  MATH  Google Scholar 

  29. Stannett, M.: Hypercomputational Models. In: Teuscher, C. (ed.) Alan Turing: The Life and Legacy of a Great Thinker, pp. 135–157. Springer, Berlin (2004)

    Google Scholar 

  30. Turing, A.M.: Systems of Logic Based on the Ordinals. In: Davis, M. (ed.) The Undecidable, pp. 154–222. Dover, New York (1939, 1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Franchette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franchette, F. (2013). Oracle Hypermachines Faced with the Verification Problem. In: Dodig-Crnkovic, G., Giovagnoli, R. (eds) Computing Nature. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37225-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37225-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37224-7

  • Online ISBN: 978-3-642-37225-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics