Skip to main content

Time-Correlated GPS Noise Dependency on Data Time Period

  • Conference paper
  • First Online:
Reference Frames for Applications in Geosciences

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 138))

Abstract

GPS position time series contain time-correlated noise. The estimated parameters using correlated time series data, as station velocities, are then more uncertain than if the time series data were uncorrelated. If the level of the time-correlated noise is not taken into account, the estimated formal uncertainties will be smaller. By estimating the type and amplitude of the noise content in time series, more realistic formal uncertainties can be assessed.

However, time-correlated noise amplitude is not constant in long time series, but depends on the time period of the time series data. Older time series data contain larger time-correlated noise amplitudes than newer time series data. This way, shorter time series with older data time period exhibit time-correlated noise amplitudes similar to the whole time series. This paper focuses on the source of the time-correlated noise amplitude decrease from older to newer time series period data. The results of several tested sources are presented. Neither the increasing ambiguity fixation rate, nor the increasing number of tracking stations, nor the increasing number of observed satellites are likely the source of the noise reduction. The quality improvement of the equipment of both tracking network and constellation is likely the main source of the correlated noise evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://igscb.jpl.nasa.gov/pipermail/igsmail

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008 : an improved 280 solution of the international terrestrial frame. J Geodesy 85:457–473, doi:10.1007/s00190-011-0444-4

    Google Scholar 

  • Beavan J (2005) Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J Geophys Res 110:B08410. doi:10.1029/2005JB003642

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Bos MS, Bastos L, Fernandes RMS (2010) The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. J Geodyn 49:205–209. doi:10.1016/j.jog.2009.10.005

    Article  Google Scholar 

  • Herring TA, King RW, McClusky SC (2008) Introduction to GAMIT/GLOBK, report, mass. Institute of Technology, Cambridge

    Google Scholar 

  • King MA, Watson CS (2010) Long GPS coordinate time series: multipath and geometry effects. J Geophys Res 115:B04403. doi:10.1029/2009JB006543

    Article  Google Scholar 

  • King MA, Williams SDP (2009) Apparent stability of GPS monumentation from shortbaseline time series. J Geophys Res 114:B10403. doi:10.1029/2009JB006319

    Article  Google Scholar 

  • Kouba J (2007) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J Geodesy. doi:10.1007/s00190-007-0170-3

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam 56:394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin M-N, Collilieux X, Wöppelmann G (2011) Correlated errors in GPS position time series: implications for velocity estimates. J Geophys Res 116:B01405. doi:10.1029/2010JB007701

    Article  Google Scholar 

  • Santamaría-Gómez A, Bouin M-N, Wöppelmann G (2012) Improved GPS data analysis strategy for tide gauge benchmark monitoring. In: S. Kenyon, M.C. Pacino, and U. Marti (eds.), Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August–4 September 2009, doi:10.1007/978-3-642-20338-1_2

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geodesy 81:781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Tregoning P, Watson C (2009) Atmospheric effects and spurious signals in GPS analyses. J Geophys Res 114:B09403. doi:10.1029/2009JB006344

    Article  Google Scholar 

  • Williams SDP (2003a) The effect of colored noise on the uncertainties of rates estimated from geodetic time series. J Geodesy 76:483–494. doi:10.1007/s00190-002-0283-4

    Article  Google Scholar 

  • Williams SDP (2003b) Offsets in global positioning system time series. J Geophys Res 108(B6):2310. doi:10.1029/2002JB002156, 2003

    Article  Google Scholar 

  • Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153. doi:10.1007/s10291-007-0086-4

    Article  Google Scholar 

  • Wöppelmann G, Letetrel C, Santamaría A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Martín Miguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi:10.1029/2009GL038720

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102:18,035–18,055

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the invaluable technical support provided by Mikael Guichard, Marc-Henri Boisis-Delavaud and Frederic Bret from the IT Center of the University of La Rochelle. The University of La Rochelle computing infrastructure was partly funded by the European Union (Contract 31031–2008, European Regional Development Fund). This work was also feasible thanks to all institutions and individuals worldwide that contribute to make GPS data and products freely available (e.g., IGS, EPN, BIGF, GSI, RENAG, AMMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Santamaría-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santamaría-Gómez, A., Bouin, MN., Collilieux, X., Wöppelmann, G. (2013). Time-Correlated GPS Noise Dependency on Data Time Period. In: Altamimi, Z., Collilieux, X. (eds) Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32998-2_19

Download citation

Publish with us

Policies and ethics