Skip to main content

Applications of Carbon Nanotubes in Oncology

  • Chapter
  • First Online:
NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

  • 647 Accesses

Abstract

Nanooncology is based on the use of nanoscale materials to provide tools for cancer detection, prevention, diagnosis and treatment. Due to their unique physical and chemical properties, carbon nanotubes (CNTs) are among newly developed products and are currently of much interest, with a large amount of research dedicated to their novel applications. In cancer research, many advantages of CNTs in drug delivery systems, cellular Imaging, and Cancer Photothermal therapy draw attention. Their physicochemical features enable introduction of several pharmaceutically relevant entities and allow for rational design of novel candidate nanoscale constructs. Thus, a detailed understanding of recent progress in nanooncology, focusing on biomedical research exploring possible application of carbon nanotubes, is required to consider the medical applications of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, M., Mirab, N., Zabihi, F.: Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials. Nanotechnology 20, 485–603 (2009). doi:10.1088/0957-4484/20/48/485603

    Article  Google Scholar 

  2. Ajima, K., Murakami, T., Mizoguchi, Y., Tsuchida, K., Ichihashi, T., Iijima, S., Yudasaka, M.: Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2, 2057–2064 (2008). doi:10.1021/nn800395t

    Article  CAS  Google Scholar 

  3. Arlt, M., Haase, D., Hampel, S., Oswald, S., Bachmatiuk, A., Klingeler, R., Schulze, R., Ritschel, M., Leonhardt, A., Fuessel, S., Buchner, B., Kraemer, K., Wirth, M.P.: Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death. Nanotechnology 21, 335101 (2010). doi:10.1088/0957-4484/21/33/335101

    Article  CAS  Google Scholar 

  4. Bai, X., Son, S.J., Zhang, S., Liu, W., Jordan, E.K., Frank, J.A., Venkatesan, T., Lee, S.B.: Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling. Nanomedicine (Lond) 3, 163–174 (2008). doi:10.2217/17435889.3.2.163

    Article  CAS  Google Scholar 

  5. Beg, S., Rizwan, M., Sheikh, A.M., Hasnain, M.S., Anwer, K., Kohli, K.: Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011). doi:10.1111/j.2042-7158.2010.01167

    Article  CAS  Google Scholar 

  6. Bhirde, A.A., Patel, V., Gavard, J., Zhang, G., Sousa, A.A., Masedunskas, A., Leapman, R.D., Weigert, R., Gutkind, J.S., Rusling, J.F.: Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3, 307–316 (2009). doi:10.1021/nn800551s

    Article  CAS  Google Scholar 

  7. Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005). doi:10.1016/j.cbpa.2005.10.005

    Article  CAS  Google Scholar 

  8. Boczkowski, J., Lanone, S.: Potential uses of carbon nanotubes in the medical field: how worried should patients be? Nanomedicine (Lond) 2, 407–410 (2007). doi:10.2217/17435889.2.4.407

    Article  Google Scholar 

  9. Burke, A., Ding, X., Singh, R., Kraft, R.A., Levi-Polyachenko, N., Rylander, M.N., Szot, C., Buchanan, C., Whitney, J., Fisher, J., Hatcher, H.C., D’Agostino Jr, R., Kock, N.D., Ajayan, P.M., Carroll, D.L., Akman, S., Torti, F.M., Torti, S.V.: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U S A 106, 12897–12902 (2009). doi:10.1073/pnas.0905195106

    Article  CAS  Google Scholar 

  10. Burke, A.R., Singh, R.N., Carroll, D.L., Owen, J.D., Kock, N.D., D’Agostino Jr, R., Torti, F.M., Torti, S.V.: Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials 32, 5970–5978 (2011). doi:10.1016/j.biomaterials.2011.04.059

    CAS  Google Scholar 

  11. Cai, D., Mataraza, J.M., Qin, Z.H., Huang, Z., Huang, J., Chiles, T.C., Carnahan, D., Kempa, K., Ren, Z.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449–454 (2005). doi:10.1038/nmeth761

    Article  CAS  Google Scholar 

  12. Chakravarty, P., Marches, R., Zimmerman, N.S., Swafford, A.D., Bajaj, P., Musselman, I.H., Pantano, P., Draper, R.K., Vitetta, E.S.: Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U S A 105, 8697–8702 (2008). doi:10.1073/pnas.0803557105

    Article  CAS  Google Scholar 

  13. Cherukuri, P., Gannon, C.J., Leeuw, T.K., Schmidt, H.K., Smalley, R.E., Curley, S.A., Weisman, R.B.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. U S A 103, 18882–18886 (2006). doi:10.1073/pnas.0609265103

    Article  CAS  Google Scholar 

  14. Cheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.: DNA and carbon nanotubes as medicine. Adv. Drug Deliv. Rev. 62, 633–649 (2010). doi:10.1016/j.addr.2010.03.007

    Article  CAS  Google Scholar 

  15. De la Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Smith, B.R., Ma, T.J., Oralkan, O., Cheng, Z., Chen, X., Dai, H., Khuri-Yakub, B.T., Gambhir, S.S.: Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 3, 557–562 (2008). doi:10.1038/nnano.2008.231

    Article  Google Scholar 

  16. Dhar, S., Liu, Z., Thomale, J., Dai, H., Lippard, S.J.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008). doi:10.1021/ja803036e

    Article  CAS  Google Scholar 

  17. Di Crescenzo, A., Velluto, D., Hubbell, J.A., Fontana, A.: Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale 3, 925–928 (2011). doi:10.1039/c0nr00444h

    Article  Google Scholar 

  18. Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J.P., Prato, M., Muller, S., Bianco, A.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano. Lett. 6, 1522–1528 (2006). doi:10.1021/nl061160x

    Article  CAS  Google Scholar 

  19. Firme III, C.P., Bandaru, P.R.: Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 6, 245–256 (2010). doi:10.1016/j.nano.2009.07.003

    Article  CAS  Google Scholar 

  20. Foldvari, M., Bagonluri, M.: Carbon nanotubes as functional excipients for nanomedicines: II drug delivery and biocompatibility issues. Nanomedicine 4, 183–200 (2008). doi:10.1016/j.nano.2008.04.003

    Article  CAS  Google Scholar 

  21. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., Hirsch, A.: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002). doi:10.1021/ja016954m

    Article  CAS  Google Scholar 

  22. Hampel, S., Kunze, D., Haase, D., Kramer, K., Rauschenbach, M., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Buchner, B.: Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine (Lond) 3, 175–182 (2008). doi:10.2217/17435889.3.2.175

    Article  CAS  Google Scholar 

  23. Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L., Flahaut, E., Soula, B., Hinterdorfer, P., Coley, H.M., Silva, S.R., McFadden, J.: Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4, 2615–2626 (2010). doi:10.1021/nn100069k

    Article  CAS  Google Scholar 

  24. Hilder, T.A., Hill, J.M.: Modeling the loading and unloading of drugs into nanotubes. Small 5, 300–308 (2009). doi:10.1002/smll.200800321

    Article  CAS  Google Scholar 

  25. Huang, H., Yuan, Q., Shah, J.S., Misra, R.D.: A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev. (2011). doi:10.1016/j.addr.2011.04.001

    Google Scholar 

  26. Huang, H.C., Barua, S., Sharma, G., Dey, S.K., Rege, K.: Inorganic nanoparticles for cancer imaging and therapy. J Control Release (2011). doi:10.1016/j.jconrel.2011.07.005

    Google Scholar 

  27. Iancu, C., Mocan, L., Bele, C., Orza, A.I., Tabaran, F.A., Catoi, C., Stiufiuc, R., Stir, A., Matea, C., Iancu, D., Agoston-Coldea, L., Zaharie, F., Mocan, T.: Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin. Int. J. Nanomedicine 6, 129–141 (2011). doi:10.2147/IJN.S15841

    Article  CAS  Google Scholar 

  28. Jain, K.K.: Advances in the field of nanooncology. BMC Med. 8, 83 (2010). doi:10.1186/1741-7015-8-83

    Article  CAS  Google Scholar 

  29. Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D.L., Ni, Q.X., Yu, X.J.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29–35 (2010). doi:10.1016/j.bbcan.2010.02.004

    CAS  Google Scholar 

  30. Kam, N.W., Liu, Z., Dai, H.: Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 45, 577–581 (2006). doi:10.1002/anie.200503389

    Article  CAS  Google Scholar 

  31. Kam, N.W., O’Connell, M., Wisdom, J.A., Dai, H.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U S A 102, 11600–11605 (2005). doi:10.1073/pnas.0502680102

    Article  CAS  Google Scholar 

  32. Karmakar, A., Bratton, S.M., Dervishi, E., Ghosh, A., Mahmood, M., Xu, Y., Saeed, L.M., Mustafa, T., Casciano, D., Radominska-Pandya, A., Biris, A.S.: Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine 6, 1045–1055 (2011). doi:10.2147/IJN.S17684

    CAS  Google Scholar 

  33. Kostarelos, K., Bianco, A., Prato, M.: Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4, 627–633 (2009). doi:10.1038/nnano.2009.241

    Article  CAS  Google Scholar 

  34. Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108–113 (2007). doi:10.1038/nnano.2006.209

    Article  CAS  Google Scholar 

  35. Lay, C.L., Liu, H.Q., Tan, H.R., Liu, Y.: Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21, 065101 (2010). doi:10.1088/0957-4484/21/6/065101

    Article  Google Scholar 

  36. Li, R., Wu, R., Zhao, L., Wu, M., Yang, L., Zou, H.: P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4, 1399–1408 (2010). doi:10.1021/nn9011225

    Article  CAS  Google Scholar 

  37. Liang, F., Chen, B.: A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)

    Article  CAS  Google Scholar 

  38. Liu, X., Tao, H., Yang, K., Zhang, S., Lee, S.T., Liu, Z.: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32, 144–151 (2011). doi:10.1016/j.biomaterials.2010.08.096

    Article  Google Scholar 

  39. Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H.: In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007). doi:10.1038/nnano.2006.170

    Article  CAS  Google Scholar 

  40. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H.: Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008). doi:10.1158/0008-5472.CAN-08-1468

    Article  CAS  Google Scholar 

  41. Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. U S A 105, 1410–1415 (2008). doi:10.1073/pnas.0707654105

    Article  CAS  Google Scholar 

  42. Liu, Z., Li, X., Tabakman, S.M., Jiang, K., Fan, S., Dai, H.: Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am. Chem. Soc. 130, 13540–13541 (2008). doi:10.1021/ja806242t

    Article  CAS  Google Scholar 

  43. Liu, Z., Sun, X., Nakayama-Ratchford, N., Dai, H.: Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56 (2007). doi:10.1021/nn700040t

    Article  Google Scholar 

  44. Liu, Z., Tabakman, S., Welsher, K., Dai, H.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2, 85–120 (2009). doi:10.1007/s12274-009-9009-8

    Article  CAS  Google Scholar 

  45. Luo, J., Solimini, N.L., Elledge, S.J.: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009). doi:10.1016/j.cell.2009.02.024

    Article  CAS  Google Scholar 

  46. Maeda, H., Bharate, G.Y., Daruwalla, J.: Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 71, 409–419 (2009). doi:10.1016/j.ejpb.2008.11.010

    Article  CAS  Google Scholar 

  47. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271–284 (2000). doi:S0168-3659(99)00248-5

    Article  CAS  Google Scholar 

  48. Marches, R., Mikoryak, C., Wang, R.H., Pantano, P., Draper, R.K., Vitetta, E.S.: The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology 22, 095101 (2011). doi:10.1088/0957-4484/22/9/095101

    Article  Google Scholar 

  49. Matsumura, S., Ajima, K., Yudasaka, M., Iijima, S., Shiba, K.: Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Mol. Pharm. 4, 723–729 (2007). doi:10.1021/mp070022t

    Article  CAS  Google Scholar 

  50. McDevitt, M.R., Chattopadhyay, D., Kappel, B.J., Jaggi, J.S., Schiffman, S.R., Antczak, C., Njardarson, J.T., Brentjens, R., Scheinberg, D.A.: Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 48, 1180–1189 (2007). doi:10.2967/jnumed.106.039131

    Article  CAS  Google Scholar 

  51. Misra, R., Acharya, S., Sahoo, S.K.: Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15, 842–850 (2010). doi:10.1016/j.drudis.2010.08.006

    Article  CAS  Google Scholar 

  52. Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y., Iijima, S.: Toxicity of single-walled carbon nanohorns. ACS Nano 2, 213–226 (2008). doi:10.1021/nn700185t

    Article  CAS  Google Scholar 

  53. Mocan, L., Tabaran, F.A., Mocan, T., Bele, C., Orza, A.I., Lucan, C., Stiufiuc, R., Manaila, I., Iulia, F., Dana, I., Zaharie, F., Osian, G., Vlad, L., Iancu, C.: Selective ex vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes. Int J Nanomedicine 6, 915–928 (2011). doi:10.2147/IJN.S19013

    CAS  Google Scholar 

  54. Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., Shiba, K.: Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1, 399–405 (2004). doi:10.1021/mp049928e

    Article  CAS  Google Scholar 

  55. Murugesan, S., Park, T.J., Yang, H., Mousa, S., Linhardt, R.J.: Blood compatible carbon nanotubes–nano-based neoproteoglycans. Langmuir 22, 3461–3463 (2006). doi:10.1021/la0534468

    Article  CAS  Google Scholar 

  56. Nimmagadda, A., Thurston, K., Nollert, M.U., McFetridge, P.S.: Chemical modification of SWNT alters in vitro cell-SWNT interactions. J. Biomed. Mater. Res. A 76, 614–625 (2006). doi:10.1002/jbm.a.30577

    Google Scholar 

  57. Pacurari, M., Qian, Y., Porter, D.W., Wolfarth, M., Wan, Y., Luo, D., Ding, M., Castranova, V., Guo, N.L.: Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol. Appl. Pharmacol. 255, 18–31 (2011). doi:10.1016/j.taap.2011.05.012

    Article  CAS  Google Scholar 

  58. Pantarotto, D., Partidos, C.D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961–966 (2003). doi:S107455210300214X

    Article  CAS  Google Scholar 

  59. Park, Y.K., Bold, B., Lee, W.K., Jeon, M.H., An, K.H., Jeong, S.Y., Shim, Y.K.: d-(+)-Galactose-conjugated single-walled carbon nanotubes as new chemical probes for electrochemical biosensors for the cancer marker galectin-3. Int. J. Mol. Sci. 12, 2946–2957 (2011). doi:10.3390/ijms12052946

    Article  CAS  Google Scholar 

  60. Pastorin, G., Wu, W., Wieckowski, S., Briand, J.P., Kostarelos, K., Prato, M., Bianco, A.: Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun. (Camb) 1182–1184 (2006). doi: 10.1039/b516309a

  61. Prakash, S., Malhotra, M., Shao, W., Tomaro-Duchesneau, C., Abbasi, S.: Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. (2011). doi:10.1016/j.addr.2011.06.013

    Google Scholar 

  62. Pramanik, M., Swierczewska, M., Green, D., Sitharaman, B., Wang, L.V.: Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 14, 034018 (2009). doi:10.1117/1.3147407

    Article  Google Scholar 

  63. Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008). doi:10.1021/ar700089b

    Article  CAS  Google Scholar 

  64. Pulskamp, K., Diabate, S., Krug, H.F.: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007). doi:10.1016/j.toxlet.2006.11.001

    Article  CAS  Google Scholar 

  65. Raffa, V., Ciofani, G., Vittorio, O., Riggio, C., Cuschieri, A.: Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine (Lond.) 5, 89–97 (2010). doi:10.2217/nnm.09.95

    Article  CAS  Google Scholar 

  66. Ruggiero, A., Villa, C.H., Holland, J.P., Sprinkle, S.R., May, C., Lewis, J.S., Scheinberg, D.A., McDevitt, M.R.: Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomedicine 5, 783–802 (2010). doi:10.2147/IJN.S13300

    CAS  Google Scholar 

  67. Sahoo, N.G., Bao, H., Pan, Y., Pal, M., Kakran, M., Cheng, H.K., Li, L., Tan, L.P.: Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. (Camb.) 47, 5235–5237 (2011). doi:10.1039/c1cc00075f

    Article  CAS  Google Scholar 

  68. Shvedova, A.A., Kisin, E.R., Porter, D., Schulte, P., Kagan, V.E., Fadeel, B., Castranova, V.: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol. Ther. 121, 192–204 (2009). doi:10.1016/j.pharmthera.2008.10.009

    Article  CAS  Google Scholar 

  69. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K.: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. U S A 103, 3357–3362 (2006). doi:10.1073/pnas.0509009103

    Article  CAS  Google Scholar 

  70. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K.: Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127, 4388–4396 (2005). doi:10.1021/ja0441561

    Article  CAS  Google Scholar 

  71. Sobhani, Z., Dinarvand, R., Atyabi, F., Ghahremani, M., Adeli, M.: Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int. J. Nanomedicine 6, 705–719 (2011). doi:10.2147/IJN.S17336

    CAS  Google Scholar 

  72. Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006). doi:10.1021/cr050569o

    Article  CAS  Google Scholar 

  73. Tasis, D., Tagmatarchis, N., Georgakilas, V., Prato, M.: Soluble carbon nanotubes. Chemistry 9, 4000–4008 (2003). doi:10.1002/chem.200304800

    Article  CAS  Google Scholar 

  74. Thomas, L.V., Arun, U., Remya, S., Nair, P.D.: A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. J. Mater. Sci. Mater. Med. 20(Suppl 1), S259–S269 (2009). doi:10.1007/s10856-008-3599-7

    Article  CAS  Google Scholar 

  75. Valcarcel, M., Cardenas, S., Simonet, B.M.: Role of carbon nanotubes in analytical science. Anal. Chem. 79, 4788–4797 (2007). doi:10.1021/ac070196m

    Article  CAS  Google Scholar 

  76. Venturelli, E., Fabbro, C., Chaloin, O., Menard-Moyon, C., Smulski, C.R., Da, R.T., Kostarelos, K., Prato, M., Bianco, A.: Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 7, 2179–2187 (2011). doi:10.1002/smll.201100137

    Article  CAS  Google Scholar 

  77. Villa, C.H., Dao, T., Ahearn, I., Fehrenbacher, N., Casey, E., Rey, D.A., Korontsvit, T., Zakhaleva, V., Batt, C.A., Philips, M.R., Scheinberg, D.A.: Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5, 5300–5311 (2011). doi:10.1021/nn200182x

    Article  CAS  Google Scholar 

  78. Vittorio, O., Raffa, V., Cuschieri, A.: Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine 5, 424–431 (2009). doi:10.1016/j.nano.2009.02.006

    Article  CAS  Google Scholar 

  79. Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126, 3010–3011 (2004). doi:10.1021/ja031723w

    Article  CAS  Google Scholar 

  80. Wang, L., Luanpitpong, S., Castranova, V., Tse, W., Lu, Y., Pongrakhananon, V., Rojanasakul, Y.: Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 11, 2796–2803 (2011). doi:10.1021/nl2011214

    Article  CAS  Google Scholar 

  81. Wang, X., Jia, G., Wang, H., Nie, H., Yan, L., Deng, X.Y., Wang, S.: Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 3025–3033 (2009)

    Article  CAS  Google Scholar 

  82. Warheit, D.B., Laurence, B.R., Reed, K.L., Roach, D.H., Reynolds, G.A., Webb, T.R.: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004). doi:10.1093/toxsci/kfg228

    Article  CAS  Google Scholar 

  83. Welsher, K., Liu, Z., Daranciang, D., Dai, H.: Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 8, 586–590 (2008). doi:10.1021/nl072949q

    Article  CAS  Google Scholar 

  84. Whitney, J.R., Sarkar, S., Zhang, J., Do, T., Young, T., Manson, M.K., Campbell, T.A., Puretzky, A.A., Rouleau, C.M., More, K.L., Geohegan, D.B., Rylander, C.G., Dorn, H.C., Rylander, M.N.: Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43, 43–51 (2011). doi:10.1002/lsm.21025

    Article  Google Scholar 

  85. Worle-Knirsch, J.M., Pulskamp, K., Krug, H.F.: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 6, 1261–1268 (2006). doi:10.1021/nl060177c

    Article  CAS  Google Scholar 

  86. Wu, H., Liu, G., Wang, X., Zhang, J., Chen, Y., Shi, J., Yang, H., Hu, H., Yang, S.: Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 7, 3496–3504 (2011). doi:10.1016/j.actbio.2011.05.031

    Article  CAS  Google Scholar 

  87. Wu, W., Li, R., Bian, X., Zhu, Z., Ding, D., Li, X., Jia, Z., Jiang, X., Hu, Y.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3, 2740–2750 (2009). doi:10.1021/nn9005686

    Article  CAS  Google Scholar 

  88. Wu, Y., Phillips, J.A., Liu, H., Yang, R., Tan, W.: Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2, 2023–2028 (2008). doi:10.1021/nn800325a

    Article  CAS  Google Scholar 

  89. Yang, F., Hu, J., Yang, D., Long, J., Luo, G., Jin, C., Yu, X., Xu, J., Wang, C., Ni, Q., Fu, D.: Pilot study of targeting magnetic carbon nanotubes to lymph nodes. Nanomedicine (Lond.) 4, 317–330 (2009). doi:10.2217/nnm.09.5

    Article  CAS  Google Scholar 

  90. Yang, F., Jin, C., Yang, D., Jiang, Y., Li, J., Di, Y., Hu, J., Wang, C., Ni, Q., Fu, D.: Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 47, 1873–1882 (2011). doi:10.1016/j.ejca.2011.03.018

    Article  CAS  Google Scholar 

  91. Zhang, H., Jiang, H., Sun, F., Wang, H., Zhao, J., Chen, B., Wangb, X.: Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes–drug supramolecular nanocomposites. Biosens. Bioelectron. 26, 3361–3366 (2011). doi:10.1016/j.bios.2011.01.020

    Article  CAS  Google Scholar 

  92. Zhang, X., Meng, L., Lu, Q., Fei, Z., Dyson, P.J.: Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30, 6041–6047 (2009). doi:10.1016/j.biomaterials.2009.07.025

    Article  CAS  Google Scholar 

  93. Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15, 428–435 (2010). doi:10.1016/j.drudis.2010.04.005

    Article  CAS  Google Scholar 

  94. Zhou, F., Xing, D., Ou, Z., Wu, B., Resasco, D.E., Chen, W.R.: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 021009 (2009). doi:10.1117/1.3078803

    Article  Google Scholar 

  95. Zhou, F., Xing, D., Wu, B., Wu, S., Ou, Z., Chen, W.R.: New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 10, 1677–1681 (2010). doi:10.1021/nl100004m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Campello Yurgel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yurgel, V.C., Campos, V.F., Collares, T., Seixas, F. (2013). Applications of Carbon Nanotubes in Oncology. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_5

Download citation

Publish with us

Policies and ethics