Skip to main content

Soil Organic Matter

  • Chapter
  • First Online:
Scheffer/SchachtschabelSoil Science

Abstract

In most topsoils, the mass of the soil organic matter only amounts to a few percent, but has an important influence on all soil functions and plays a central role in the global carbon cycle. For this reason, the carbon content, or the dark color value, is a differentiating criterion for soil descriptions in German and international classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Supplementary Reading

  • Baldock JA, Broos (2011) Soil organic matter, chap. II-1. In: Hunag PM, Li Y, Sumner ME (Hrsg) Handbook of soil science. CRC, Boca Raton

    Google Scholar 

  • Doerr SH, Ritsema CJ, Dekker LW, Scott DF, Carter D (2007) Water repellence of soils: new insights and emerging research needs. Hydrol Process 21:2223–2228

    Article  Google Scholar 

  • ECCP (European Climate Change Programme) (2003) Working group sinks related to agricultural soils. Final report, 76 p

    Google Scholar 

  • Gregorich EG, Beare MH, Mckim UF, Skjemstad JO (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70:975–985

    Article  CAS  Google Scholar 

  • Hedges JI, Eglington G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, De Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Article  CAS  Google Scholar 

  • Helfrich M, Flessa H, Mikutta R, Dreves A, Ludwig B (2007) Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58:1316–1329

    Article  CAS  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc B 329:361–368

    Article  CAS  Google Scholar 

  • Kalbitz K, Glaser B, Bol R (2004) Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55:401–413

    Article  Google Scholar 

  • Kalbitz K, Meyer A, Yang R, Gerstberger P (2007) Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 86:301–318

    Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon?—a review. Biogeochemistry 85:91–118

    Google Scholar 

  • Knorr W, Prentice I, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) A review on the macromolecular organic composition in plant and microbial residues as input to soil. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64

    Article  Google Scholar 

  • Marschner BS, Brodowski A, Dreves G, Gleixner P-M, Grootes U, Hamer A, Heim G, Jandl R, Ji K, Kaiser K, Kalbitz C, Kramer P, Leinweber J, Rethemeyer MWI, Schmidt L Schwark, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Neumann F (1979) Böden in Landschaftsausschnitten Bayerns. II. Südliches Tertiär-Hügelland und Ampertal. Bayer Landw Jb 56:960–971

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424

    Article  Google Scholar 

  • Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Change Biol 6:525–539

    Article  Google Scholar 

Cited References

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the ttransformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Change Biol Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Poulton PR (2006) Long-term management impacts on soil C, N and physical fertility—part 1: broadbalk experiment. Soil Tillage Res 91:30–38

    Article  Google Scholar 

  • Börjesson G, Menichetti L, Kirchmann H, Kätterer T (2012) Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48:245–257

    Article  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52(3):345–353

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (1999) RothC-26.3, a model for the turnover of carbon in soil: model description and user’s guide. Lawes Agricultural Trust, Harpenden, UK

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Google Scholar 

  • Dendoncker N, Van Wesemael B, Rounsevell MDA, Roelandt C, Lettens S (2004) Belgium’s CO2 mitigation potential under improved cropland management. Agric Ecosyst Environ 103:101–116

    Article  Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600

    Article  CAS  Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56:753–763

    CAS  Google Scholar 

  • Fengel, D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin

    Google Scholar 

  • Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes P-M (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171:36–51

    Article  CAS  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    Article  CAS  Google Scholar 

  • Garten J, Charles T, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136:342–352

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W, Haumaier L, Christensen BT (1994) Land use effects on the composition of organic matter in particle-size separates of soils. II. CP-MAS and solution 13C-NMR analysis. Eur J Soil Sci 46:147–158

    Article  Google Scholar 

  • Gurwick NP, Moore LA, Kelle C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 8(9):e75932

    Article  CAS  Google Scholar 

  • Haider K (1992) Problems related to the humification processes in soils of the temperate climate. In: Bollag J-M, Stotzky G (Hrsg) Soil biochemistry, vol 7. Dekker, New York, pp 55–94

    Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Jenkinson DS (1977) Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C-labelled ryegrass decomposing under field conditions. J Soil Sci 28:424–434

    Article  CAS  Google Scholar 

  • Jenkinson DS (1981) The fate of plant and animal residues in soil. In: Hayes MHB (ed) The chemistry of soil processes. Wiley, Chichester, pp 505–561

    Google Scholar 

  • Jenkinson DS (1988) Soil organic matter and its dynamics. In: Waid A (Hrsg) Russel’s soil conditions and plant growth, 11th edn. Longman, Harlow, pp 564–607

    Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Fiedler S, Kölbl A, Amelung W, Bräuer T, Cao ZH, Don A, Grootes P, Jahn R, Schwark L, Vogelsang V, Wissing L, Kögel-Knabner I (2013) The carbon count of 2000 years of rice cultivation. Glob Change Biol 19:1107–1113

    Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008a) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Google Scholar 

  • Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Lützow M (2008b) An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13

    Google Scholar 

  • Körschens M, Albert E, Armbruster M, Barkusky D, Baumecker M, Behle-Schalk L, Bischoff R, Cergan Z, Ellmer F, Herbst F, Hoffmann S, Hofmann B, Kismanyoky T, Kubat J, Kunzova E, Lopez-Fando C, Merbach I, Merbach W, Pardor MT, Rogasik J, Ruhlmann J, Spiegel H, Schulz E, Tajnsek A, Toth Z, Wegener H, Zorn W (2013) Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch Agron Soil Sci 59:1017–1040

    Article  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Bollag J-M, Stotzky G (Hrsg) Soil biochemistry, vol 9. Dekker, New York, pp 23–78

    Google Scholar 

  • Lair GH, Gerzabek MH, Haberhauer G (2007) Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett 5:23–27

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Ludwig B, Helfrich M, Flessa H (2005) Modelling the long-term stabilization of carbon from maize in a silty soil. Plant Soil 278:315–325

    Article  CAS  Google Scholar 

  • Manna MC, Swarup A, Wanjari RH, Mishra B, Shahi DK (2007) Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res 94:397–409

    Article  Google Scholar 

  • Olah G-M, Reisinger O, Kilbertus G (1978) Biodégradation et humification. Atlas ultrastructural. Presses de l’université Laval, Quebec

    Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  CAS  Google Scholar 

  • Rethemeyer J (2004) Organic carbon transformation in agricultural soils: radiocarbon analysis of organic matter fractions and biomarker compounds. Dissertation, Christian-Albrechts-Universität

    Google Scholar 

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Google Scholar 

  • Schulten H-R, Leinweber P (2000) New insights into organo-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30:399–432

    Article  CAS  Google Scholar 

  • Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, Chanton JP, Chapin FS III, Christensen TR, Ciais P, Crosby BT, Czimczik CI, Grosse G, Harden J, Hayes DJ, Hugelius G, Jastrow JD, Jones JB, Kleinen T, Koven CD, Krinner G, Kuhry P, Lawrence DM, McGuire AD, Natali SM, O’Donnell JA, Ping CL, Riley WJ, Rinke A, Romanovsky VE, Sannel ABK, Schädel C, Schaefer K, Sky J, Subin ZM, Tarnocai C, Turetsky MR, Waldrop MP, Walter Anthony KM, Wickland KP, Wilson CJ, Zimov SA (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change 119:359–374

    Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775

    Google Scholar 

  • Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford

    Google Scholar 

  • Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10:399–411

    Article  Google Scholar 

  • Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Change Biol 8:519–530

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  Google Scholar 

  • Waksman SA (1938) Humus: origin, chemical composition and importance to nature. Baillière, Tindall & Cox, London

    Google Scholar 

  • Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Change Biol 18:2233–2245

    Article  Google Scholar 

  • Yang XY, Ren WD, Sun BH, Zhang SL (2012) Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177:49–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Kögel-Knabner .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blume, HP. et al. (2016). Soil Organic Matter. In: Scheffer/SchachtschabelSoil Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30942-7_3

Download citation

Publish with us

Policies and ethics