Skip to main content

Ligands for Ionotropic Glutamate Receptors

  • Chapter
Marine Toxins as Research Tools

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 46))

Abstract

Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aamodt SM, Constantine-Paton M (1999) The role of neural activity in synaptic development and its implications for adult brain function. Adv Neurol 79:133–144.

    CAS  Google Scholar 

  • Agrawal SG, Evans RH (1986) The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol 87:345–355.

    CAS  Google Scholar 

  • Alt A, Weiss B, Ornstein PL, Gleason SD, Bleakman D, Stratford RE, Jr., Witkin JM (2007) Anxiolytic-like effects through a GLU(K5) kainate receptor mechanism. Neuropharmacology 52:1482–1487.

    CAS  Google Scholar 

  • Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun 197:1267–1276.

    CAS  Google Scholar 

  • Armstrong N, Sun Y, Chen GQ, Gouaux E (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395:913–917.

    CAS  Google Scholar 

  • Ashworth TS, Brown EG, Roberts FM (1972) Biosynthesis of willardiine and isowillardiine in germinating pea seeds and seedlings. Biochem J 129:897–905.

    CAS  Google Scholar 

  • Awobuluyi M, Yang J, Ye Y, Chatterton JE, Godzik A, Lipton SA, Zhang D (2007) Subunit-specific roles of glycine-binding domains in activation of NR1/NR3 N-methyl-D-aspartate receptors. Mol Pharmacol 71:112–122.

    CAS  Google Scholar 

  • Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547.

    CAS  Google Scholar 

  • Bargu S, Powell CL, Coale SL, Busman M, Doucette GJ, Silver MW (2002) Krill: a potential vector for domoic acID in marine food webs. Mar Ecol Prog Ser 237:209–216.

    CAS  Google Scholar 

  • Bargu S, Lefebvre K, Silver MW (2006) Effect of dissolved domoic acID on the grazing rate of krill Euphausia pacifica. Mar Ecol Prog Ser 312:169–175.

    CAS  Google Scholar 

  • Barton ME, Peters SC, Shannon HE (2003) Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 56:17–26.

    CAS  Google Scholar 

  • Barton ME, White HS, Wilcox KS (2004) The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 59:13–24.

    CAS  Google Scholar 

  • Bates SS (2000) Domoic-acID-producing diatoms: another genus added! J Phycol 36:978–983.

    Google Scholar 

  • Bates SS, Bird CJ, Defreitas ASW, Foxall R, Gilgan M, Hanic LA, Johnson GR, McCulloch AW, Odense P, Pocklington R, Quilliam MA, Sim PG, Smith JC, Rao DVS, Todd ECD, Walter JA, Wright JLC (1989) Pennate diatom Nitzschia-Pungens as the primary source of domoic acID, atoxin in shellfish from eastern Prince Edward Island, Canada. Can J Fish Aquat Sci 46:1203–1215.

    CAS  Google Scholar 

  • Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acID: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403.

    Google Scholar 

  • Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587.

    Google Scholar 

  • Bettler B, Boulter J, Hermans-Borgmeyer I, O'Shea-Greenfield A, Deneris ES, Moll C, Borgmeyer U, Hollmann M, Heinemann S (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron 5:583–595.

    CAS  Google Scholar 

  • Bettler B, Egebjerg J, Sharma G, Pecht G, Hermans-Borgmeyer I, Moll C, Stevens CF, Heinemann S (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8:257–265.

    CAS  Google Scholar 

  • Bill BD, Cox FH, Horner RA, Borchert JA, Trainer VL (2006) The first closure of shellfish harvesting due to domoic acID in Puget Sound, Washington, USA. Afr J Mar Sci 28:435–440.

    Google Scholar 

  • Blagbrough IS, Moya E, Taylor S (1994) Polyamines and polyamine amIDes from wasps and spIDers. Biochem Soc Trans 22:888–893.

    CAS  Google Scholar 

  • Bleakman D, Alt A, Nisenbaum ES (2006) Glutamate receptors and pain. Semin Cell Dev Biol 17:592–604.

    CAS  Google Scholar 

  • Bliss T V, CollingrIDge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    CAS  Google Scholar 

  • Bortolotto ZA, Clarke VR, Delany CM, Parry MC, Smolders I, Vignes M, Ho KH, Miu P, Brinton BT, Fantaske R, Ogden A, Gates M, Ornstein PL, Lodge D, Bleakman D, CollingrIDge GL (1999) Kainate receptors are involved in synaptic plasticity. Nature 402:297–301.

    CAS  Google Scholar 

  • Bruce M, Bukownik R, Eldefrawi AT, Eldefrawi ME, Goodnow R, Jr., Kallimopoulos T, Konno K, Nakanishi K, Niwa M, Usherwood PN (1990) Structure-activity relationships of analogues of the wasp toxin philanthotoxin: non-competitive antagonists of quisqualate receptors. Toxicon 28:1333–1346.

    CAS  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recom-binant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 485:403–418.

    CAS  Google Scholar 

  • Calaf R, Barlatier A, Garçon D, Balansard G, Pellegrini M, Reynaud J (1989) Isolation of an unknown kainic peptIDe from the red alga AlsIDium helminthocorton. J Appl Phycol 1:257–266.

    Google Scholar 

  • Cantrell BE, Zimmerman DM, Monn JA, Kamboj RK, Hoo KH, Tizzano JP, Pullar IA, Farrell LN, Bleakman D (1996) Synthesis of a series of aryl kainic acID analogs and evaluation in cells stably expressing the kainate receptor humGluR6. J Med Chem 39:3617–3624.

    CAS  Google Scholar 

  • Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182–186.

    CAS  Google Scholar 

  • Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acID intoxication: evIDence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 37:123–126.

    CAS  Google Scholar 

  • Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798.

    CAS  Google Scholar 

  • Chiamulera C, Costa S, Valerio E, Reggiani A (1992) Domoic acID toxicity in rats and mice after intracerebroventricular administration: comparison with excitatory amino acID agonists. Pharmacol Toxicol 70:115–120.

    CAS  Google Scholar 

  • Clark RB, Donaldson PL, Gration KA, Lambert JJ, Piek T, Ramsey R, Spanjer W, Usherwood PN (1982) Block of locust muscle glutamate receptors by delta-philanthotoxin occurs after receptor activations. Brain Res 241:105–114.

    CAS  Google Scholar 

  • Clark RF, Williams SR, Nordt SP, Manoguerra AS (1999) A review of selected seafood poisonings. Undersea Hyperb Med 26:175–184.

    CAS  Google Scholar 

  • Clayden J, Read B, Hebditch KR (2005) Chemistry of domoic acID, isodomoic acIDs, and their analogues. Tetrahedron 61:5713–5724.

    CAS  Google Scholar 

  • Cohen JL, Limon A, Miledi R, Chamberlin AR (2006) Design, synthesis, and biological evaluation of a scaffold for iGluR ligands based on the structure of (−)-dysiherbaine. Bioorg Med Chem Lett 16:2189–2194.

    CAS  Google Scholar 

  • Contractor A, Swanson GT, Sailer A, O'Gorman S, Heinemann SF (2000) IDentification of the kainate receptor subunits underlying modulation of excitatory synaptic transmission in the CA3 region of the hippocampus. J Neurosci 20:8269–8278.

    CAS  Google Scholar 

  • Contractor A, Swanson GT, Heinemann SF (2001) Kainate receptors are involved in short and long term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216.

    CAS  Google Scholar 

  • Contractor A, Sailer AW, Darstein M, Maron C, Xu J, Swanson GT, Heinemann SF (2003) Loss of kainate receptor-mediated heterosynaptic facilitation of mossy-fiber synapses in KA2-/-mice. J Neurosci 23:422–429.

    CAS  Google Scholar 

  • Cusack CK, Bates SS, Quilliam MA, Patching JW, Raine R (2002) Confirmation of domoic acID production by Pseudo-nitzschia australis (bacillariophyceae) isolated from Irish waters. J Phycol 38:1106–1112.

    CAS  Google Scholar 

  • D'Aniello A, Spinelli P, De Simone A, D'Aniello S, Branno M, Aniello F, Fisher GH, Di Fiore MM, Rastogi RK (2003) Occurrence and neuroendocrine role of D-aspartic acID and N-methyl-D-aspartic acID in Ciona intestinalis. FEBS Lett 552:193–198.

    Google Scholar 

  • Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354.

    CAS  Google Scholar 

  • Debonnel G, Beauchesne L, de Montigny C (1989) Domoic acID, the alleged “mussel toxin,” might produce its neurotoxic effect through kainate receptor activation: an electrophysiologi-cal study in the dorsal hippocampus. Can J Physiol Pharmacol 67:29–33.

    CAS  Google Scholar 

  • Dingledine R, Hume RI, Heinemann SF (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci 12:4080–4087.

    CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62.

    CAS  Google Scholar 

  • Donevan SD, McCabe RT (2000) Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol Pharmacol 58:614–623.

    CAS  Google Scholar 

  • Dudek FE, Clark S, Williams PA, Grabenstatter HL (2006) Kainate-induced Status Epilepticus: a chronic model of acquired epilepsy. In: Models of Seizures and Epilepsy (Pitkänen A, Schwartzkroin PA, Moshé SL, eds.). Burlington, MA: Elsevier Academic Press.

    Google Scholar 

  • Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351:745–748.

    CAS  Google Scholar 

  • Estrada G, Villegas E, Corzo G (2007) SpIDer venoms: a rich source of acylpolyamines and pep-tIDes as new leads for CNS drugs. Nat Prod Rep 24:145–161.

    CAS  Google Scholar 

  • Evans ML, Usherwood PN (1985) The effect of lectins on desensitisation of locust muscle gluta-mate receptors. Brain Res 358:34–39.

    CAS  Google Scholar 

  • Evans S V, Shing TKM, Aplin RT, Fellows LE, Fleet GWJ (1985) Sulphate ester of trans-4-hydroxypipecolic acID in seeds of Peltophorum. Phytochemistry 24:2593–2596.

    CAS  Google Scholar 

  • Fehling J, Green DH, DavIDson K, Bolch CJ, Bates SS (2004) Domoic acID production by Pseudo-nitzschia seriata (bacillariophyceae) in Scottish waters. J Phycol 40:622–630.

    CAS  Google Scholar 

  • Fisahn A, Heinemann SF, McBain CJ (2005) The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurones. J Physiol 562:199–203.

    CAS  Google Scholar 

  • Frerking M, Ohliger-Frerking P (2002) AMPA receptors and kainate receptors encode different features of afferent activity. J Neurosci 22:7434–7443.

    CAS  Google Scholar 

  • Frerking M, Schmitz D, Zhou Q, Johansen J, Nicoll RA (2001) Kainate receptors depress excitatory synaptic transmission at CA3- > CA1 synapses in the hippocampus via a direct presynap-tic action. J Neurosci 21:2958–2966.

    CAS  Google Scholar 

  • Fritz L, Quilliam MA, Wright JLC, Beale AM, Work TM (1992) An outbreak of domoic acID and poisoning attributed to the pennate diatom Pseudonitzschia australius. J Phycol 28:438–442.

    Google Scholar 

  • Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192.

    CAS  Google Scholar 

  • Garateix A, Flores A, Garcia-Andrade JM, Palmero A, Aneiros A, Vega R, Soto E (1996) Antagonism of glutamate receptors by a chromatographic fraction from the exudate of the sea anemone Phyllactis flosculifera. Toxicon 34:443–450.

    CAS  Google Scholar 

  • Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204.

    CAS  Google Scholar 

  • Gereau RW, Swanson GT, eds. (2008) The Glutamate Receptors. Totawa, NJ: Humana Press.

    Google Scholar 

  • Gmelin R (1959) The free amino acIDs in the seeds of Acacia willardiana (Mimosaceae). Isolation of willardiin, a new plant amino acID which is probably L-beta-(3-uracil)-alpha-aminopropionic acID. Hoppe Seylers Z Physiol Chem 316:164–169.

    CAS  Google Scholar 

  • Goldstein T, Mazet JA, Zabka TS, Langlois G, Colegrove KM, Silver M, Bargu S, Van Dolah F, Leighfield T, Conrad PA, Barakos J, Williams DC, Dennison S, Haulena M, Gulland FM (2008) Novel symptomatology and changing epIDemiology of domoic acID toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc Biol Sci 275(1632):267–276.

    CAS  Google Scholar 

  • Gondran M, Eckeli AL, Migues PV, Gabilan NH, Rodrigues AL (2002) The crude extract from the sea anemone, Bunodosoma caissarum elicits convulsions in mice: possible involvement of the glutamatergic system. Toxicon 40:1667–1674.

    CAS  Google Scholar 

  • Greger IH, Esteban JA (2007) AMPA receptor biogenesis and trafficking. Curr Opin Neurobiol 17:289–297.

    CAS  Google Scholar 

  • Gross H, Goeger DE, Hills P, Mooberry SL, Ballantine DL, Murray TF, Valeriote FA, Gerwick WH (2006) Lophocladines, bioactive alkaloIDs from the red alga Lophocladia sp. J Nat Prod 69:640–644.

    CAS  Google Scholar 

  • Haack JA, Rivier J, Parks TN, Mena EE, Cruz LJ, Olivera BM (1990) Conantokin-T. A gamma-carboxyglutamate containing peptIDe with N-methyl-d-aspartate antagonist activity. J Biol Chem 265:6025–6029.

    CAS  Google Scholar 

  • Hammerland LG, Olivera BM, Yoshikami D (1992) Conantokin-G selectively inhibits N-methyl-d-aspartate-induced currents in Xenopus oocytes injected with mouse brain mRNA. Eur J Pharmacol 226:239–244.

    CAS  Google Scholar 

  • Hampson DR, Manalo JL (1998) The activation of glutamate receptors by kainic acID and domoic acID. Nat Toxins 6:153–158.

    CAS  Google Scholar 

  • Hampson DR, Huang XP, Wells JW, Walter JA, Wright JL (1992) Interaction of domoic acID and several derivatives with kainic acID and AMPA binding sites in rat brain. Eur J Pharmacol 218:1–8.

    CAS  Google Scholar 

  • Hardy RW, Scott TM, Hatfield CL, Barnett HJ, Gauglitz EJ, Wekell JC, Eklund MW (1995) Domoic acID in rainbow trout (Oncorhynchus mykiss) feeds. Aquaculture 131:253–260.

    CAS  Google Scholar 

  • Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378:82–85.

    CAS  Google Scholar 

  • Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267.

    CAS  Google Scholar 

  • Herb A, Burnashev N, Werner P, Sakmann B, Wisden W, Seeburg PH (1992) The KA-2 subunit of excitatory amino acID receptors shows wIDespread expression in brain and forms ion channels with distantly related subunits. Neuron 8:775–785.

    CAS  Google Scholar 

  • Hirano T (2006) Cerebellar regulation mechanisms learned from studies on GluRdelta2. Mol Neurobiol 33:1–16.

    CAS  Google Scholar 

  • Holland PT, Selwood AI, Mountfort DO, Wilkins AL, McNabb P, Rhodes LL, Doucette GJ, Mikulski CM, King KL (2005) Isodomoic acID C, an unusual amnesic shellfish poisoning toxin from Pseudo-nitzschia australis. Chem Res Toxicol 18:814–816.

    CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.

    CAS  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA gated glutamate receptor channels depends on subunit composition. Science 252:851–853.

    CAS  Google Scholar 

  • Huettner JE (1990) Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5:255–266.

    CAS  Google Scholar 

  • Huettner JE (2003) Kainate receptors and synaptic transmission. Prog Neurobiol 70:387–407.

    CAS  Google Scholar 

  • Iino M, Koike M, Isa T, Ozawa S (1996) Voltage-dependent blockage of Ca(2+) permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J Physiol 496:431–437.

    CAS  Google Scholar 

  • Impellizzeri G, Mangiafico S, Oriente G, Piattelli M, Sciuto S, Fattorusso E, Magno S, Santacroce C, Sica D (1975) Amino acids and low-molecularweight carbohydrates of some marine red algae. Phytochemistry 14:1549–1557.

    CAS  Google Scholar 

  • Iverson F, Truelove J (1994) Toxicology and seafood toxins: domoic acid. Nat Toxins 2:334–339.

    CAS  Google Scholar 

  • Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26:20–26.

    CAS  Google Scholar 

  • Jeffery B, Barlow T, Moizer K, Paul S, Boyle C (2004) Amnesic shellfish poison. Food Chem Toxicol 42:545–557.

    CAS  Google Scholar 

  • Jiang L, Xu J, Nedergaard M, Kang J (2001) A kainate receptor increases the efficacy of GABAergic synapses. Neuron 30:503–513.

    CAS  Google Scholar 

  • Jimenez EC, Donevan S, Walker C, Zhou LM, Nielsen J, Cruz LJ, Armstrong H, White HS, Olivera BM (2002) Conantokin-L, a new NMDA receptor antagonist: determinants for anti-convulsant potency. Epilepsy Res 51:73–80.

    CAS  Google Scholar 

  • Jin XT, Pare JF, Raju DV, Smith Y (2006) Localization and function of pre- and postsynaptic kain-ate receptors in the rat globus pallidus. Eur J Neurosci 23:374–386.

    Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531.

    CAS  Google Scholar 

  • Johnston GA, Kennedy SM, Twitchin B (1979) Action of the neurotoxin kainic acid on high affinity uptake of l-glutamic acid in rat brain slices. J Neurochem 32:121–127.

    CAS  Google Scholar 

  • Kamiya H, Ozawa S (1998) Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J Physiol (Lond) 509:833–845.

    CAS  Google Scholar 

  • Kamiya H, Ozawa S (2000) Kainate receptor-mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse. J Physiol (Lond) 523:653–665.

    CAS  Google Scholar 

  • Klein RC, Prorok M, Galdzicki Z, Castellino FJ (2001) The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-d-aspartate receptors. J Biol Chem 276:26860–26867.

    CAS  Google Scholar 

  • Konno K, Hashimoto K, Ohfune Y, Shirahama H, Matsumoto T (1988) Acromelic acids A and B. Potent neuroexcitatory amino acids isolated from Clitocybe acromelalga. J Am Chem Soc 110:4807–4815.

    CAS  Google Scholar 

  • Kotaki Y, Koike K, Sato S, Ogata T, Fukuyo Y, Kodama M (1999) Confirmation of domoic acid production of Pseudo-nitzschia multiseries isolated from Ofunato Bay, Japan. Toxicon 37:677–682.

    CAS  Google Scholar 

  • Kotaki Y, Koike K, Yoshida M, Van Thuoc C, Huyen NTM, Hoi NC, Fukuyo Y, Kodama M (2000) Domoic acid production in Nitzschia sp (Bacillariophyceae) isolated from a shrimp-culture pond in Do Son, Vietnam. J Phycol 36:1057–1060.

    CAS  Google Scholar 

  • Kotaki Y, Lundholm N, Onodera H, Kobayashi K, Bajarias FFA, Furio EF, Iwataki M, Fukuyo Y, Kodama M (2004) Wide distribution of Nitzschia navis-varingica, a new domoic acid-producing benthic diatom found in Vietnam. Fish Sci 70:28–32.

    CAS  Google Scholar 

  • Kung SS, Wu YM, Chow WY (1996) Characterization of two fish glutamate receptor cDNA molecules: absence of RNA editing at the Q/R site. Brain Res Mol Brain Res 35:119–130.

    CAS  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12:1291–1300.

    CAS  Google Scholar 

  • Lash LL, Sanders JM, Akiyama N, Shoji M, Postila P, Pentikainen OT, Sasaki M, Sakai R, Swanson GT (2007) Novel analogs and stereoisomers of the marine toxin neodysiherbaine with specificity for kainate receptors. J Pharmacol Exp Ther 324:484–496.

    Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18:493–503.

    CAS  Google Scholar 

  • Lauri SE, Bortolotto ZA, Bleakman D, Ornstein PL, Lodge D, Isaac JT, Collingridge GL (2001) A critical role of a facilitatory presynaptic kainate receptor in mossy fiber LTP. Neuron 32:697–709.

    CAS  Google Scholar 

  • Laycock M V, de Freitas ASW, Wright JLC (1989) Glutamate agonists from marine algae. J Appl Phycol 1:113–122.

    Google Scholar 

  • Layer RT, Wagstaff JD, White HS (2004) Conantokins: peptide antagonists of NMDA receptors. Curr Med Chem 11:3073–3084.

    CAS  Google Scholar 

  • Lefebvre KA, Powell CL, Busman M, Doucette GJ, Moeller PD, Silver JB, Miller PE, Hughes MP, Singaram S, Silver MW, Tjeerdema RS (1999) Detection of domoic acid in northern anchovies and California sea lions associated with an unusual mortality event. Nat Toxins 7:85–92.

    CAS  Google Scholar 

  • Lefebvre KA, Dovel SL, Silver MW (2001) Tissue distribution and neurotoxic effects of domoic acid in a prominent vector species, the northern anchovy Engraulis mordax. Marine Biology 138:693–700.

    CAS  Google Scholar 

  • Lefebvre KA, Bargu S, Kieckhefer T, Silver MW (2002a) From sanddabs to blue whales: the pervasiveness of domoic acid. Toxicon 40:971–977.

    CAS  Google Scholar 

  • Lefebvre KA, Silver MW, Coale SL, Tjeerdema RS (2002b) Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Marine Biology 140:625–631.

    CAS  Google Scholar 

  • Lefebvre KA, Noren DP, Schultz IR, Bogard SM, Wilson J, Eberhart BT (2007) Uptake, tissue distribution and excretion of domoic acid after oral exposure in coho salmon (Oncorhynchus kisutch). Aquat Toxicol 81:266–274.

    CAS  Google Scholar 

  • Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, et al. (1988) CGS 19755, a selective and competitive N-methyl-d-aspartate-type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246:65–75.

    CAS  Google Scholar 

  • Lerma J (2006) Kainate receptor physiology. Curr Opin Pharmacol 6:89–97.

    CAS  Google Scholar 

  • Lomeli H, Wisden W, Köhler M, Keinänen K, Sommer B, Seeburg PH (1992) High-affinity kainate and domoate receptors in rat brain. FEBS Lett 307:139–143.

    CAS  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ, Kohr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322.

    Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713.

    CAS  Google Scholar 

  • Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123.

    CAS  Google Scholar 

  • Lundholm N, Moestrup Ø (2000) Morphology of the marine diatom Nitzschia navis-varingica, sp. Nov. (bacillariophyceae), another producer of the neurotoxin domoic acid. J Phycol 36:1162–1174.

    Google Scholar 

  • Lundholm N, Hansen PJ, Kotaki Y (2005) Lack of allelopathic effects of the domoic acid-producing marine diatom Pseudo-nitzschia multiseries. Mar Ecol Prog Ser 288:21–33.

    Google Scholar 

  • Lygo B, Slack D, Wilson C (2005) Synthesis of neodysiherbaine. Tetrahedron Lett 46:6629–6632.

    CAS  Google Scholar 

  • Lynch G, Gall CM (2006) Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29:554–562.

    CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522.

    CAS  Google Scholar 

  • Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101.

    CAS  Google Scholar 

  • Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1986) Structures Of isodomoic acid-A, acid-B And acid-C, novel insecticidal amino-acids from the red alga Chondria armata. Chem Pharm Bull 34:4892–4895.

    CAS  Google Scholar 

  • Maeda M, Kodama T, Tanaka T, Yoshizumi H, Takemoto T, Nomoto K, Fujita T (1987) Structures of domoilactone A and B, novel amino acids from the red alga. Tetrahedron Lett 28:633–636.

    CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213.

    CAS  Google Scholar 

  • Malmberg AB, Gilbert H, McCabe RT, Basbaum AI (2003) Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 101:109–116.

    CAS  Google Scholar 

  • Maricq AV, Peckol E, Driscoll M, Bargmann CI (1995) Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378:78–81.

    CAS  Google Scholar 

  • Masaki H, Maeyama J, Kamada K, Esumi T, Iwabuchi Y, Hatakeyama S (2000) Total synthesis of (−)-dysiherbaine. J Am Chem Soc 122:5216–5217.

    CAS  Google Scholar 

  • Mayer ML (2005) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying Kainate receptor selectivity. Neuron 45:539–552.

    CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol 394:501–527.

    CAS  Google Scholar 

  • Mayer ML, Benveniste M, Patneau DK, Vyklicky L, Jr. (1992) Pharmacologic properties of NMDA receptors. Ann N Y Acad Sci 648:194–204.

    CAS  Google Scholar 

  • McCormick J, Li Y, McCormick K, Duynstee HI, van Engen AK, van der Marel GA, Ganem B, van Boom JH, Meinwald J (1999) Structure and total synthesis of HF-7, a neuroactive glyconucle-oside disulfate from the funnel-web spider Hololena curta. J Am Chem Soc 121:5661–5665.

    CAS  Google Scholar 

  • McIntosh JM, Olivera BM, Cruz LJ, Gray WR (1984) Gamma-carboxyglutamate in a neuroactive toxin. J Biol Chem 259:14343–14346.

    CAS  Google Scholar 

  • Melyan Z, Wheal HV, Lancaster B (2002) Metabotropic-mediated kainate receptor regulation of Isahp and excitability in pyramidal cells. Neuron 34:107–114.

    CAS  Google Scholar 

  • Melyan Z, Lancaster B, Wheal HV (2004) Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 24:4530–4534.

    CAS  Google Scholar 

  • Mena EE, Gullak MF, Pagnozzi MJ, Richter KE, Rivier J, Cruz LJ, Olivera BM (1990) Conantokin-G: a novel peptide antagonist to the N-methyl-daspartic acid (NMDA) receptor. Neurosci Lett 118:241–244.

    CAS  Google Scholar 

  • Moloney MG (1998) Excitatory amino acids. Nat Prod Rep 15:205–219.

    CAS  Google Scholar 

  • Moloney MG (1999) Excitatory amino acids. Nat Prod Rep 16:485–498.

    CAS  Google Scholar 

  • Moloney MG (2002) Excitatory amino acids. Nat Prod Rep 19:597–616.

    CAS  Google Scholar 

  • Moroni F, Galli A, Mannaioni G, Carla V, Cozzi A, Mori F, Marinozzi M, Pellicciari R (1995) NMDA receptor heterogeneity in mammalian tissues: focus on two agonists, (2S,3R,4S) cyclo-propylglutamate and the sulfate ester of 4-hydroxy-(S)-pipecolic acid. Naunyn Schmiedebergs Arch Pharmacol 351:371–376.

    CAS  Google Scholar 

  • Mos L (2001) Domoic acid: a fascinating marine toxin. Environ Toxicol Pharmacol 9:79–85.

    CAS  Google Scholar 

  • Mulle C, Sailer A, Pérez-Otaño I, Dickinson-Anson H, Castillo PE, Bureau I, Maron C, Gage FH, Mann JR, Bettler B, Heinemann SF (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605.

    CAS  Google Scholar 

  • Mulle C, Sailer A, Swanson GT, Brana C, O'Gorman S, Bettler B, Heinemann SF (2000) Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28:475–484.

    CAS  Google Scholar 

  • Murakami S, Takemoto T, Shimizu Z (1953) Studies on the effective principles of Digenea simplex Aq. I. Separation of the effective fraction by liquid chromatography. J Pharm Soc Jpn 73:1026–1028.

    CAS  Google Scholar 

  • Nadler JV (1979) Kainic acid: neurophysiological and neurotoxic actions. Life Sci 24:289–299.

    CAS  Google Scholar 

  • Nadler JV (1981) Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29:2031–2042.

    CAS  Google Scholar 

  • Naur P, Vestergaard B, Skov LK, Egebjerg J, Gajhede M, Kastrup JS (2005) Crystal structure of the kainate receptor GluR5 ligand-binding core in complex with (S)-glutamate. FEBS Lett 579:1154–1160.

    CAS  Google Scholar 

  • Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS (2007) Ionotropic glutamate-like receptor delta2 binds d-serine and glycine. Proc Natl Acad Sci USA 104:14116–14121.

    CAS  Google Scholar 

  • Nawy S, Copenhagen DR (1987) Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 325:56–58.

    CAS  Google Scholar 

  • Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–525.

    CAS  Google Scholar 

  • Nitta I, Watase H, Tomiie Y (1958) Structure of kainic acid and its isomer, allokainic acid. Nature 181:761–762.

    CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465.

    CAS  Google Scholar 

  • Olivera BM (2006) Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281:31173–31177.

    CAS  Google Scholar 

  • Olney JW (1994) Excitotoxins in foods. Neurotoxicology 15:535–544.

    CAS  Google Scholar 

  • Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47.

    CAS  Google Scholar 

  • Paternain AV, Morales M, Lerma J (1995) Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14:185–189.

    CAS  Google Scholar 

  • Paternain AV, Vicente A, Nielsen EO, Lerma J (1996) Comparative antagonism of kainate-activated kainate and AMPA receptors in hippocampal neurons. Eur J Neurosci 8:2129–2136.

    CAS  Google Scholar 

  • Pei-Gen X, Shan-Lin F (1986) Traditional antiparasitic drugs in China. Parasitol Today 2:353–355.

    CAS  Google Scholar 

  • Perez-Otaño I, Ehlers MD (2004) Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13:175–189.

    Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, McNutt LA, Remis RS (1990a) Amnesic shellfish poisoning: a new clinical syndrome due to domoic acid. Can Dis Wkly Rep 16 (Suppl. 1E):7–8.

    Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd EC, Remis RS (1990b) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322:1775–1780.

    CAS  Google Scholar 

  • Perovic S, Wickles A, Schutt C, Gerdts G, Pahler S, Steffen R, Muller WEG (1998) Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor. Environ Toxicol Pharmacol 6:125–133.

    CAS  Google Scholar 

  • Phillips D, Chamberlin AR (2002) Total synthesis of dysiherbaine. J Org Chem 67:3194–3201.

    CAS  Google Scholar 

  • Pinheiro PS, Perrais D, Coussen F, Barhanin J, Bettler B, Mann JR, Malva JO, Heinemann SF, Mulle C (2007) GluR7 is an essential subunit of presynaptic kainate autoreceptors at hippo-campal mossy fiber synapses. Proc Natl Acad Sci USA 104:12181–12186.

    CAS  Google Scholar 

  • Planells-Cases R, Lerma J, Ferrer-Montiel A (2006) Pharmacological intervention at ionotropic glutamate receptor complexes. Curr Pharm Des 12:3583–3596.

    CAS  Google Scholar 

  • Prorok M, Castellino FJ (2007) The molecular basis of conantokin antagonism of NMDA receptor function. Curr Drug Targets 8:633–642.

    CAS  Google Scholar 

  • Ramsey UP, Bird CJ, Shacklock PF, Laycock MV, Wright JLC (1994) Kainic acid and 1′-hydrox-ykainic acid from Palmariales. Nat Toxins 2:286–292.

    CAS  Google Scholar 

  • Ratte S, Lacaille JC (2006) Selective degeneration and synaptic reorganization of hippocampal interneurons in a chronic model of temporal lobe epilepsy. Adv Neurol 97:69–76.

    Google Scholar 

  • Ren Z, Riley NJ, Garcia EP, Sanders JM, Swanson GT, Marshall J (2003) Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 23:6608–6616.

    Google Scholar 

  • Rodriguez-Moreno A, Herreras O, Lerma J (1997) Kainate receptors presynaptically downregu-late GABAergic inhibition in the rat hippocampus. Neuron 19:893–901.

    CAS  Google Scholar 

  • Sakai R, Kamiya H, Murata M, Shimamoto K (1997) Dysiherbaine: a new neurotoxic amino acid from the Micronesian marine sponge Dysidea herbacea. J Am Chem Soc 119:4112–4116.

    CAS  Google Scholar 

  • Sakai R, Koike T, Sasaki M, Shimamoto K, Oiwa C, Yano A, Suzuki K, Tachibana K, Kamiya H (2001a) Isolation, structure determination, and synthesis of neodysiherbaine A, a new excitatory amino acid from a marine sponge. Org Lett 3:1479–1482.

    CAS  Google Scholar 

  • Sakai R, Swanson GT, Shimamoto K, Green T, Contractor A, Ghetti A, Tamura-Horikawa Y, Oiwa C, Kamiya H (2001b) Pharmacological properties of the potent epileptogenic amino acid dysiherbaine, a novel glutamate receptor agonist isolated from the marine sponge Dysidea herbacea. J Pharmacol Exp Ther 296:650–658.

    CAS  Google Scholar 

  • Sakai R, Matsubara H, Shimamoto K, Jimbo M, Kamiya H, Namikoshi M (2003) Isolations of N-methyl-d-aspartic acid-type glutamate receptor ligands from Micronesian sponges. J Nat Prod 66:784–787.

    CAS  Google Scholar 

  • Sakai R, Suzuki K, Shimamoto K, Kamiya H (2004) Novel betaines from a Micronesian sponge Dysidea herbacea. J Org Chem 69:1180–1185.

    CAS  Google Scholar 

  • Sakai R, Minato S, Koike K, Koike K, Jimbo M, Kamiya H (2005) Cellular and subcellular localization of kainic acid in the marine red alga Digenea simplex. Cell Tissue Res 322:491–502.

    CAS  Google Scholar 

  • Sakai R, Swanson GT, Sasaki M, Shimamoto K, Kamiya H (2006) Dysiherbaine: a new generation of excitatory amino acids of marine origin. CNS Agents Med Chem 6:83–108.

    CAS  Google Scholar 

  • Sakai R, Yoshida K, Kimura A, Koike K, Jimbo M, Koike K, Kobiyama A, Kamiya H (2008) Cellular origin of dysiherbaine, a marine sponge-derived excitatory amino acid. ChemBioChem 9(4):543–551.

    CAS  Google Scholar 

  • Sanders JM, Ito K, Settimo L, Pentikainen OT, Shoji M, Sasaki M, Johnson MS, Sakai R, Swanson GT (2005) Divergent pharmacological activity of novel marine-derived excitatory amino acids on glutamate receptors. J Pharmacol Exp Ther 314:1068–1078.

    CAS  Google Scholar 

  • Sanders JM, Pentikainen OT, Settimo L, Pentikainen U, Shoji M, Sasaki M, Sakai R, Johnson MS, Swanson GT (2006) Determination of binding site residues responsible for the subunit selectivity of novel marine-derived compounds on kainate receptors. Mol Pharmacol 69:1849–1860.

    CAS  Google Scholar 

  • Sasaki M, Maruyama T, Sakai R, Tachibana K (1999) Synthesis and biological activity of dysi-herbaine model compound. Tetrahedron Lett 40:3195–3198.

    CAS  Google Scholar 

  • Sasaki M, Koike T, Sakai R, Tachibana K (2000) Total synthesis of (−)-dysiherbaine, a novel neuroexcitotoxic amino acid. Tetrahedron Lett 41:3923–3926.

    CAS  Google Scholar 

  • Sasaki M, Tsubone K, Shoji M, Oikawa M, Shimamoto K, Sakai R (2006) Design, total synthesis, and biological evaluation of neodysiherbaine A derivative as potential probes. Bioorg Med Chem Lett 16:5784–5787.

    CAS  Google Scholar 

  • Sasaki M, Akiyama N, Tsubone K, Shoji M, Oikawa M, Sakai R (2007) Total synthesis of dysi-herbaine. Tetrahedron Lett 48:5697–5700.

    CAS  Google Scholar 

  • Sato M, Inoue F, Kanno N, Sato Y (1987) The occurrence of N-methyl-Daspartic acid in muscle extracts of the blood shell, Scapharca broughtonii. Biochem J 241:309–311.

    CAS  Google Scholar 

  • Sato M, Nakano T, Takeuchi M, Kanno N, Nagahisa E, Sato Y (1996) Distribution of neuroexcita-tory amino acids in marine algae. Phytochemistry 42:1595–1597.

    CAS  Google Scholar 

  • Sawant PM, Weare BA, Holland PT, Selwood AI, King KL, Mikulski CM, Doucette GJ, Mountfort DO, Kerr DS (2007) Isodomoic acids A and C exhibit low KA receptor affinity and reduced in vitro potency relative to domoic acid in region CA1 of rat hippocampus. Toxicon 50:627–638.

    CAS  Google Scholar 

  • Schiffer HH, Swanson GT, Heinemann SF (1997) Rat GluR7 and a carboxyterminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate. Neuron 19:1141–1146.

    CAS  Google Scholar 

  • Schmitz D, Frerking M, Nicoll RA (2000) Synaptic activation of presynaptic kainate receptors on hippocampal mossy fiber synapses. Neuron 27:327–338.

    CAS  Google Scholar 

  • Schmitz D, Mellor J, Breustedt J, Nicoll RA (2003) Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6:1058–1063.

    CAS  Google Scholar 

  • Scholin CA, Gulland F, Doucette GJ, Benson S, Busman M, Chavez FP, Cordaro J, DeLong R, De Vogelaere A, Harvey J, Haulena M, Lefebvre K, Lipscomb T, Loscutoff S, Lowenstine LJ, Marin R, III, Miller PE, McLellan WA, Moeller PDR, Powell CL, Rowles T, Silvagni P, Silver M, Spraker T, Trainer V, Van Dolah FM (2000) Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403:80–84.

    CAS  Google Scholar 

  • Schuster CM, Ultsch A, Schloss P, Cox JA, Schmitt B, Betz H (1991) Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254:112–114.

    CAS  Google Scholar 

  • Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343.

    CAS  Google Scholar 

  • Shin-ya K, Kim J-S, Furihata K, Hayakawa Y, Seto H (1997a) Structure of kaitocephalin, a novel gluta-mate receptor antagonist produced by Eupenicillium shearii. Tetrahedron Lett 38:7079–7082.

    CAS  Google Scholar 

  • Shin-ya K, Kim JS, Hayakawa Y, Seto H (1997b) Protective effect of a novel AMPA and NMDA antagonist kaitocephalin against glutamate neurotoxicity. J Neurochem 73:S190.

    Google Scholar 

  • Shinozaki H (1988) Pharmacology of the glutamate receptor. Prog Neurobiol 30:399–435.

    CAS  Google Scholar 

  • Shoji M, Akiyama N, Tsubone K, Lash LL, Sanders JM, Swanson GT, Sakai R, Shimamoto K, Oikawa M, Sasaki M (2006) Total synthesis and biological evaluation of neodysiherbaine A and analogues. J Org Chem 71:5208–5220.

    CAS  Google Scholar 

  • Sierra Beltran A, Palafox-Uribe M, Grajales-Montiel J, Cruz-Villacorta A, Ochoa JL (1997) Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35:447–453.

    CAS  Google Scholar 

  • Simmons RM, Li DL, Hoo KH, Deverill M, Ornstein PL, Iyengar S (1998) Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 37:25–36.

    CAS  Google Scholar 

  • Smolders I, Bortolotto ZA, Clarke VR, Warre R, Khan GM, O'Neill MJ, Ornstein PL, Bleakman D, Ogden A, Weiss B, Stables JP, Ho KH, Ebinger G, Collingridge GL, Lodge D, Michotte Y (2002) Antagonists of GLU(K5) containing kainate receptors prevent pilocarpine-induced limbic seizures. Nat Neurosci 5:796–804.

    CAS  Google Scholar 

  • Smothers CT, Woodward JJ (2007) Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-Daspartate NR1 and NR3 subunits. J Pharmacol Exp Ther 322:739–748.

    CAS  Google Scholar 

  • Snider BB, Hawryluk NA (2000) Synthesis of (−)-dysiherbaine. Org Lett 2:635–638.

    CAS  Google Scholar 

  • Sommer B, Keinanen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249:1580–1585.

    CAS  Google Scholar 

  • Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19.

    CAS  Google Scholar 

  • Sommer B, Burnashev N, Verdoorn TA, Keinänen K, Sakmann B, Seeburg PH (1992) A glutamate receptor channel with high affinity for domoate and kainate. EMBO J 11:1651–1656.

    CAS  Google Scholar 

  • Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32.

    CAS  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300.

    CAS  Google Scholar 

  • Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O'Hara PJ, Heinemann SF (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13:1345–1357.

    CAS  Google Scholar 

  • Swanson GT, Gereau RW, I V, Green T, Heinemann SF (1997) Identification of amino acid residues that control functional behavior in GluR5 and GluR6 kainate receptors. Neuron 19:913–926.

    CAS  Google Scholar 

  • Swanson GT, Green T, Sakai R, Contractor A, Che W, Kamiya H, Heinemann SF (2002) Differential activation of individual subunits in heteromeric kainate receptors. Neuron 34:589–598.

    CAS  Google Scholar 

  • Takahashi K, Matsumura T, Corbin GRM, Ishihara J, Hatakeyama S (2006) A highly stereocon-trolled total synthesis of (−)-neodysiherbaine A. J Org Chem 71:4227–4231.

    CAS  Google Scholar 

  • Takemoto T (1978) Isolation and structural identification of naturally occurring excitatory amino acids. In: Kainic Acid as a Tool in Neurobiology (McGreer EG, ed.), New York pp. 1–15: Raven Press.

    Google Scholar 

  • Takemoto T, Daigo K (1958) Constituents of Chondria armata. Chem Pharm Bull 6:578–580.

    CAS  Google Scholar 

  • Takemoto T, Nakajima T, Sakuma R (1964) Isolation of a flycidal constituent “Ibotenic Acid” from Amanita muscaria and A. pantherina. Yakugaku Zasshi 84:1233–1234.

    CAS  Google Scholar 

  • Takemoto T, Nakajima T, Arihara S, Koike K (1975) Studies on the constituents of Quisqualis Fructus. II. Structure of quisqualic acid. Yakugaku Zasshi 95:326–332.

    CAS  Google Scholar 

  • Teichert RW, Jimenez EC, Twede V, Watkins M, Hollmann M, Bulaj G, Olivera BM (2007) Novel conantokins from conus parius venom are specific antagonists of NMDA receptors. J Biol Chem 282(51):36905–36913.

    CAS  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322:1781–1787.

    CAS  Google Scholar 

  • Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84:41–68.

    CAS  Google Scholar 

  • Tiedeken JA, Ramsdell JS, Ramsdell AF (2005) Developmental toxicity of domoic acid in zebrafish (Danio rerio). Neurotoxicol Teratol 27:711–717.

    CAS  Google Scholar 

  • Trainer VL, Adams NG, Bill BD, Anulacion BF, Wekell JC (1998) Concentration and dispersal of a Pseudo-nitzschia bloom in Penn Cove, Washington, USA. Nat Toxins 6:113–126.

    CAS  Google Scholar 

  • Tremblay J-F (2000) Shortage of kainic acid hampers neuroscience research. Chem Eng News 78:14–15.

    Google Scholar 

  • Tsai C, Schneider JA, Lehmann J (1988) Trans-2-carboxy-3-pyrrolidineacetic acid (CPAA), a novel agonist at NMDA-type receptors. Neurosci Lett 92:298–302.

    CAS  Google Scholar 

  • Usherwood PN (2000) Natural and synthetic polyamines: modulators of signalling proteins. Farmaco 55:202–205.

    CAS  Google Scholar 

  • Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182.

    CAS  Google Scholar 

  • Washburn MS, Dingledine R (1996) Block of alpha-amino-3-hydroxy-5-methyl4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 278:669–678.

    CAS  Google Scholar 

  • Watanabe H, Kitahara T (2007) Revision of the stereochemistries of natural products through the synthetic study: Synthesis of fudecalone and kaitocephalin. J Synth Org Chem Jpn 65:511–519.

    CAS  Google Scholar 

  • Watters MR (1995) Organic neurotoxins in seafoods. Clin Neurol Neurosurg 97:119–124.

    CAS  Google Scholar 

  • Wekell JC, Gauglitz Jr EJ, Barnett HJ, Hatfield CL, Simons D, Ayres D (1994) Occurrence of domoic acid in Washington State razor clams (Siliqua patula) during 1991–1993. Nat Toxins 2:197–205.

    CAS  Google Scholar 

  • Werner P, Voigt M, Keinänen K, Wisden W, Seeburg PH (1991) Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature 351:742–744.

    CAS  Google Scholar 

  • White HS, McCabe RT, Armstrong H, Donevan SD, Cruz LJ, Abogadie FC, Torres J, Rivier JE, Paarmann I, Hollmann M, Olivera BM (2000) In vitro and in vivo characterization of conan-tokin-R, a selective NMDA receptor antagonist isolated from the venom of the fish-hunting snail Conus radiatus. J Pharmacol Exp Ther 292:425–432.

    CAS  Google Scholar 

  • Wilding TJ, Huettner JE (1997) Activation and desensitization of hippocampal kainate receptors. J Neurosci 17:2713–2721.

    CAS  Google Scholar 

  • Williams AJ, Dave JR, Phillips JB, Lin Y, McCabe RT, Tortella FC (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-d-aspartate antagonist conantokin-G: in vitro (primary cerebellar neurons) and in vivo (rat model of transient focal brain ischemia) studies. J Pharmacol Exp Ther 294:378–386.

    CAS  Google Scholar 

  • Williams AJ, Ling G, Berti R, Moffett JR, Yao C, Lu XM, Dave JR, Tortella FC (2003) Treatment with the snail peptide CGX-1007 reduces DNA damage and alters gene expression of c-fos and bcl-2 following focal ischemic brain injury in rats. Exp Brain Res 153:16–26.

    CAS  Google Scholar 

  • Wisden W, Seeburg PH (1993) A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 13:3582–3598.

    CAS  Google Scholar 

  • Wittekindt B, Malany S, Schemm R, Otvos L, Maccecchini ML, Laube B, Betz H (2001) Point mutations identify the glutamate binding pocket of the N-methyl-d-aspartate receptor as major site of conantokin-G inhibition. Neuropharmacology 41:753–761.

    CAS  Google Scholar 

  • Work TM, Barr BB, Beale AM, Fritz L, Quilliam MA, Wright JLC (1993) Epidemiology of domoic acid poisoning in brown pelicans (Pelicanus occidentalis) and Brandt's cormorants (Phalacrocorax pencillatus) in California. J Zool Wildlife Med 24:54–62.

    Google Scholar 

  • Wright JLC, Boyd RK, Defreitas ASW, Falk M, Foxall RA, Jamieson WD, Laycock M V, McCulloch AW, McInnes AG, Odense P, Pathak V, Quilliam MA, Ragan M, Sim PG, Thibault P, Walter JA, Gilgan M, Richard DJA, Dewar D (1989) Identification of domoic acid, a neuroex-citatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–490.

    CAS  Google Scholar 

  • Xia Z, Storm DR (2005) The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 6:267–276.

    CAS  Google Scholar 

  • Yuzaki M (2004) The delta2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 3:89–93.

    CAS  Google Scholar 

  • Zaman L, Arakawa O, Shimosu A, Onoue Y, Nishio S, Shida Y, Noguchi T (1997) Two new isomers of domoic acid from a red alga, Chondria armata. Toxicon 35:205–212.

    CAS  Google Scholar 

  • Zhu JJ, Esteban JA, Hayashi Y, Malinow R (2000) Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat Neurosci 3:1098–1106.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Swanson, G.T., Sakai, R. (2009). Ligands for Ionotropic Glutamate Receptors. In: Fusetani, N., Kem, W. (eds) Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87895-7_5

Download citation

Publish with us

Policies and ethics