Skip to main content

Simulation System Based on Augmented Reality for Optimization of Training Tactics on Military Operations

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10850))

Abstract

In this article, we proposed an augmented reality system that was developed in Unity-Vuforia. The system simulates a war environment using three-dimensional objects and audiovisual resources to create a real war conflict. Vuforia software makes use of the database for the creation of the target image and, in conjunction with the Unity video game engine resources, animation algorithms are developed and implemented in 3D objects. That is used at the hardware level are physical images and a camera of a mobile device that combined with the programming allows to visualize the interaction of the objects through the recognition and tracking of images, said algorithms are belonging to Vuforia. The system allows the user to interact with the physical field and the digital objects through the virtual button. To specify, the system was tested and designed for mobile devices that have the Android operating system as they show acceptable performance and easy integration of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, W.G., Abad, V., Ruiz, H., Aguilar, J., Aguilar-Castillo, F.: RRT-based path planning for virtual bronchoscopy simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 155–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_13

    Chapter  Google Scholar 

  2. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based path planning for virtual aerial navigation. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 176–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_13

    Chapter  Google Scholar 

  3. Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  4. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  5. Livingston, M.A., Rosenblum, L.J., Julier, S.J., Brown, D., Baillot, Y., Swan II, J.E., Gabbard, J.L., Hix, D.: An augmented reality system for military operations in urban terrain. In: Proceedings of Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, Florida, 2–5 December, p. 89 (abstract only) (2002)

    Google Scholar 

  6. Hicks, J., Flanagan, R., Petrov, P., Stoyen, A.: Eyekon: Distributed Augmented Reality for Soldier Teams. © Copyright 21st Century Systems, Inc. (2003)

    Google Scholar 

  7. Juhnke, J., Kallish, A., Delaney, D., Dziedzic, K., Chou, R., Chapel, T.: Tanagram Partners. Final Project Report. Aiding Complex Decision Making through Augmented Reality: iARM, an Intelligent Augmented Reality Model (2010)

    Google Scholar 

  8. Quintero, A.: Augmented reality on the battlefield, October 2013. http://gglassday.com/3103/la-realidad-aumentada-en-el-campo-de-batalla/

  9. Callejas, M., Quiroga, J., Alarcón, A.: Interactive environment for tourist sites, implementing augmented reality layar. Technological University of Bogotá

    Google Scholar 

  10. Perez, C.P.: Virtual reality: a real contribution for the evaluation and treatment of people with intellectual disability, Santiago (2008)

    Google Scholar 

  11. García, R.: Serious games with augmented reality for evaluation and rehabilitation of persons with disabilities (2012)

    Google Scholar 

  12. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_35

    Chapter  Google Scholar 

  13. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_51

    Chapter  Google Scholar 

  14. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_28

    Chapter  Google Scholar 

  15. Carracedo, J., Martínez, C.L.: Augmented Reality: An Alternative, Nicaragua (2012)

    Google Scholar 

  16. Moralejo, L., Sanz, C.V., Pesado, P., Baldassarri, S.: Advances in the design of an author tool for the creation of educational activities based on augmented reality. Sedici, La Plata (2014)

    Google Scholar 

  17. Kato, H., Blanding, R., Azuma, R.: Image processing and the Artoolkit. Osgart project, Artoolworks

    Google Scholar 

  18. Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., León, G., Jara-Olmedo, A.: Math model of UAV multi rotor prototype with fixed wing aerodynamic structure for a flight simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 199–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_15

    Chapter  Google Scholar 

  19. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  20. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amaguaña, F., Collaguazo, B., Tituaña, J., Aguilar, W.G. (2018). Simulation System Based on Augmented Reality for Optimization of Training Tactics on Military Operations. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics