Skip to main content

RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

Abstract

In this paper, we propose a path planning system for autonomous navigation of unmanned aerial vehicle based on a Rapidly-exploring Random Trees (RRT) combination of RRT* Goal and Limit. The system includes a point cloud obtained from the vehicle workspace with a RGB-D sensor, an identification module for interest regions and obstacles of the environment, and a collision-free path planner based on RRT for a safe and optimal navigation of vehicles in 3D spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  2. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  3. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)

    Google Scholar 

  4. Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)

    Google Scholar 

  5. Koren, Y.: Robotics for Engineers. McGraw-Hill, New York (1998)

    Google Scholar 

  6. Gonzalez, R., Safabakhsh, R.: Computer vision techniques for industrial applications and robot control. Computer (2006)

    Google Scholar 

  7. Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)

    Google Scholar 

  8. Vasishth, O., Gigras, Y.: Path planning problem. Int. J. Comput. Appl. 104(2) (2014)

    Google Scholar 

  9. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)

    Google Scholar 

  10. Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: IEEE/RSJ International Conference on intelligent Robots and Systems (2000)

    Google Scholar 

  11. Heinz, K., Hanson, W.: Interactive 3D segmentation of MRI and CT volumes using morphological operations. J. Comput. Assist. Tomogr. 16(2), 285–294 (1992)

    Article  Google Scholar 

  12. Henry, P., Krainin, P., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER) (2010)

    Google Scholar 

  13. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

    Google Scholar 

  14. Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. Int. J. Robot. Res. 27, 1117–1134 (2008)

    Article  Google Scholar 

  15. Oliver, A., Kang, S., Wunsche, B., MacDonald, B.: Using the Kinect as a navigation sensor for mobile robotics. In: Conference on Image and Vision Computing, New Zealand (2012)

    Google Scholar 

  16. Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system. In: The 6th International Conference on System of Systems Engineering, Albuquerque (2011)

    Google Scholar 

  17. Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., Ng, A.Y.: Grasping novel objects with depth segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei (2010)

    Google Scholar 

  18. Ali Shah, S.A., Bennamoun, M., Boussaid, F.: A novel algorithm for efficient depth segmentation using low resolution (Kinect) images. In: IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland (2015)

    Google Scholar 

  19. Liu, J., Yang, J., Liu, H., Tian, X., Gao, M.: An improved ant colony algorithm for robot path planning. Soft Computing, 1(11) (2016)

    Google Scholar 

  20. Glasius, R., Komoda, A., Gielen, S.C.A.M.: Neural network dynamics for path planning and obstacle avoidance. Neural Netw. 8(1), 125–133 (2000)

    Article  MATH  Google Scholar 

  21. Xin, D., Hua-hua, C., Wei-kang, G.: Neural network and genetic algorithm based global path planning in a static environment. J. Zhejiang Univ. Sci. A 6(6), 549–554 (2005, 2006)

    Google Scholar 

  22. Seraji, H., Howard, A.: Behavior-based robot navigation on challenging terrain: a fuzzy logic approach. IEEE Trans. Robot. Autom. 18(3), 308–321 (2002)

    Article  Google Scholar 

  23. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

    Google Scholar 

  24. Devaurs, D., Siméon, T., Cortés, J.: Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Akin, H.L., Amato, N.M., Isler, Volkan, Stappen, A.F. (eds.) Algorithmic Foundations of Robotics XI. STAR, vol. 107, pp. 143–159. Springer, Cham (2015). doi:10.1007/978-3-319-16595-0_9

    Google Scholar 

  25. Gammell, J.D., Srinivasa, S., Barfoot, T.: Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014) (2014)

    Google Scholar 

  26. Hatledal, L.I.: Kinect V2 SDK 2.0 – Colored point clouds, 15 August 2015. http://laht.info/kinect-v2-colored-point-clouds/

  27. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., Siegwart, R.: Kinect v2 for mobile robot navigation: evaluation and modeling. In: 2015 International Conference on Advanced Robotics (ICAR), Istanbul (2015)

    Google Scholar 

  28. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  29. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30, 846–894 (2010)

    Article  Google Scholar 

  30. Lachat, E., Hélene, M., Tania, L., Pierre, G.: Assessment and calibration of a RGB-D camera (Kinect v2 Sensor) towards a potential use for close-range 3D modeling. Remote Sens. 7(10), 13070–13097 (2015)

    Article  Google Scholar 

  31. Pagliari, D., Pinto, L.: Calibration of kinect for Xbox one and comparison between the two generations of microsoft sensors. Sensors 15(11), 27569–27589 (2015)

    Article  Google Scholar 

  32. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997)

    Article  Google Scholar 

  33. Sreedhar, K., Panlal, B.: Enhancement of images using morphological transformations. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 4(1), 33–50 (2012)

    Google Scholar 

  34. Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)

    Google Scholar 

  35. Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)

    Google Scholar 

  36. Navon, E., Miller, O., Averbuch, A.: Color image segmentation based on adaptive local thresholds. Image Vis. Comput. 23, 69–85 (2005)

    Article  Google Scholar 

  37. Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)

    Google Scholar 

  38. Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques*. Comput. Vis.Graph. Image Process. 41, 233–260 (1988)

    Article  Google Scholar 

  39. The MathWorks, Inc.: pcregrigid documentation (2015). http://www.mathworks.com/help/vision/ref/pcregrigid.html. Accessed 24 Febrero 2016

  40. Corke, P.I.: Robotics, Vision and Control: Fundamental Algorithms in Matlab. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aguilar, W.G., Morales, S., Ruiz, H., Abad, V. (2017). RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics