Skip to main content

Current Processing Methods in the Development of Micro- and Nanoencapsulation from Edible Polymers

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

Micro- and nanoencapsulation are processes that enclose a substance within a wall material at the micro and nano scale levels. This technology shows an important role in the food industry due to the many advantages and a variety of new properties that it can offer to the encapsulated material. Among them it can be highlighted the improvement of stability by protecting a food ingredient from an adverse environment, masking organoleptic properties, facilitation of handling equipment, enhanced bioavailability of bioactive compounds, and controlled release, which could reduce doses and potential toxicity of the encapsulated compound. Edible polymers such as polysaccharides and proteins have been proposed as wall materials in micro- and nanoencapsulation, due to the benefits that they offer over synthetic polymers. In addition, edible polymers are highly available, safe, convenient, and can increase the quality of the final product. Hence, the techniques used to successfully achieve these processes depend on the carrier wall materials used. This chapter will focus on describing the characteristics of the different processing methods used for the production of micro- and nanoencapsulated compounds, their advantages, disadvantages and applications. It will also provide insights about recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander M, Acero Lopez A, Fang Y, Corredig M (2012) Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT Food Sci Technol 47(2):427–436

    Article  CAS  Google Scholar 

  • Alvim ID, Stein MA, Koury IP, Dantas FBH, Cruz CLCV (2016) Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci Technol 65:689–694

    Article  CAS  Google Scholar 

  • Arpagaus C, John P, Collenberg A, Rütti D (2017) Nanocapsules formation by nano spray drying. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, Cambridge, pp 346–401

    Chapter  Google Scholar 

  • Arslan-Tontul S, Erbas M (2017) Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT Food Sci Technol 81:160–169

    Article  CAS  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  PubMed  CAS  Google Scholar 

  • Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA (2014) Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 71:141–146

    Article  PubMed  CAS  Google Scholar 

  • Bajaj PR, Bhunia K, Kleiner L, Melito HSJ, Smith D, Ganjyal G, Sablani SS (2017) Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. J Microencapsul 34(2):218–230

    Article  PubMed  CAS  Google Scholar 

  • Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182

    Article  CAS  PubMed  Google Scholar 

  • Bandhavi P (2013) Microencapsulation process materials, manufacturing methods and applications: a review. Int J Pharm Res Dev 5(03):008–020

    Google Scholar 

  • Belščak-Cvitanović A, Stojanović R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101

    Article  CAS  Google Scholar 

  • Belščak-Cvitanović A, Đorđević V, Karlović S, Pavlović V, Komes D, Ježek D, Bugarski B, Nedović V (2015) Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll 51:361–374

    Article  CAS  Google Scholar 

  • Belščak-Cvitanović A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić I, Vojvodić A, Mršić G, Komes D (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152

    Article  CAS  Google Scholar 

  • Berg S, Bretz M, Hubbermann EM, Schwarz K (2012) Influence of different pectins on powder characteristics of microencapsulated anthocyanins and their impact on drug retention of shellac coated granulate. J Food Eng 108:158–165

    Article  CAS  Google Scholar 

  • Celli GB, Ghanem A, Brooks MSL (2015) Bioactive encapsulated powders for functional foods—a review of methods and current limitations. Food Bioprocess Technol 8(9):1825–1837

    Article  CAS  Google Scholar 

  • Chang D, Abbas S, Hayat K, Xia S, Zhang X, Xie M, Kim J (2010) Encapsulation of ascorbic acid in amorphous maltodextrin employing extrusion as affected by matrix core ratio and water content. Int J Food Sci Technol 45:1895–1901

    Article  CAS  Google Scholar 

  • Chen J, Wang Q, Liu CM, Gong J (2017) Issues deserve attention in encapsulating probiotics: critical review of existing literature. Crit Rev Food Sci Nutr 57(6):1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Chun H, Kim CH, Cho YH (2014) Microencapsulation of Lactobacillus plantarum DKL 109 using external ionic gelation method. Korean J Food Sci Anim Resour 34(5):692–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Consoli L, Grimaldi R, Sartori T, Menegalli FC, Hubinger MD (2016) Gallic acid microparticles produced by spray chilling technique: production and characterization. LWT Food Sci Technol 65:79–87

    Article  CAS  Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67

    Article  PubMed  CAS  Google Scholar 

  • Coronel-Aguilera C, Martín-González M (2015) Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT Food Sci Technol 62:187–193

    Article  CAS  Google Scholar 

  • Da Silva PT, Fries LLM, De Menezes CR, Holkem AT, Schwan CL, Wigmann EF, Bastos JO, Da Silva CB (2014) Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Cienc Rural 44(7):1304–1311

    Article  CAS  Google Scholar 

  • Dahili LA, Feczkó T (2015) Cross-linking of horseradish peroxidase enzyme to fine particles generated by Nano Spray Dryer B-90. Period Polytech Chem Eng 59:209–214

    Article  CAS  Google Scholar 

  • De Castro-Cislaghi FP, Silva CRE, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193

    Article  CAS  Google Scholar 

  • De Paz E, Martín A, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CMM, Cocero MJ (2012) Formulation of β-carotene by precipitation from pressurized ethyl acetate-on water emulsions for application as natural colorant. Food Hydrocoll 26:17–27

    Article  CAS  Google Scholar 

  • De Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34

    Article  PubMed  CAS  Google Scholar 

  • Di Battista CA, Constenla D, Ramírez-Rigo MV, Piña J (2015) The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technol 286:193–201

    Article  CAS  Google Scholar 

  • Dias DR, Botrel DA, Fernandes RVB, Borges SV (2017) Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 13:31–37

    Article  Google Scholar 

  • Dong QY, Chen MY, Xin Y, Qin XY, Cheng Z, Shi L, Tang ZX (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Technol 48(7):1339–1351

    Article  CAS  Google Scholar 

  • Dordevic V, Balanc B, Cvitanovic AB, Levic S, Trifkovic K, Kalusevic A, Kostic I, Komes D, Bugarski B, Nedovic V (2015) Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng Rev 7(4):452–490

    Article  CAS  Google Scholar 

  • Eckert C, Garcia-Serpa V, Dos Santos ACF, Da Costa SM, Dalpubel V, Lehn DN, Volken de Souza CF (2017) Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT Food Sci Technol 82:176–183

    Article  CAS  Google Scholar 

  • Engelmann C, Kragl U (2018) Spray congealing as innovative technique for enzyme encapsulation. J Chem Technol Biotechnol 93:191–197

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21(10):510–523

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2012) Encapsulation techniques for food ingredient systems. In: Bhandari B, Roos YH (eds) Food materials science and engineering. Blackwell Publishing Ltd, Oxford, pp 320–348

    Chapter  Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23(1):13–27

    Article  CAS  Google Scholar 

  • Fathi M, Martín A, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39(1):18–39

    Article  CAS  Google Scholar 

  • Ferrari CC, Germer SPM, Alvim ID, Vissotto FZ, De Aguirre JM (2012) Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int J Food Sci Technol 47(6):1237–1245

    Article  CAS  Google Scholar 

  • Gadkari P, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122–138

    Article  CAS  Google Scholar 

  • Gamboa OD, Gonçalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. Proc Food Sci 1:1732–1739

    Article  CAS  Google Scholar 

  • Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 29:302–307

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2018) Processing nano- and microcapsules for industrial applications. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Editorial Elsevier, pp 989–1011. https://doi.org/10.1016/B978-0-12-813351-4.00057-2. EE.UU. ISBN: 978-0-12-813351-4

  • Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 2. Bentham Science Publishers, pp 296–322. https://doi.org/10.2174/9781681085449117010009. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9

  • Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD (2012) Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 3(7):737–744

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Zafar N, Fessi H, Elaissari A (2015) Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496(2):173–190

    Article  PubMed  CAS  Google Scholar 

  • Kavitake D, Kandasamy S, Devi P, Shetty PH (2018) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods-a review. Food Biosci 21:34–44

    Article  CAS  Google Scholar 

  • Kim ES, Lee JS, Lee HG (2016) Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Sci Biotechnol 25(5):1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogsgård Nielsen C, Kjems J, Mygind T, Snabe T, Schwarz K, Serfert Y, Meyer RL (2016) Enhancing the antibacterial efficacy of isoeugenol by emulsion encapsulation. Int J Food Microbiol 229:7–14

    Article  PubMed  CAS  Google Scholar 

  • Kumar KPS, Sk T, Banu S, Lakshmi PN, Bhowmik D (2013) Microencapsulation technology. Indian J Res Pharm Biotechnol 1(3):324–328

    CAS  Google Scholar 

  • Kurozawa L, Hubinger M (2017) Hydrophilic food compounds encapsulation by ionic gelation. Curr Opin Food Sci 15:50–55

    Article  Google Scholar 

  • Kwak HS (2014) Overview of nano- and microencapsulation for foods. In: Kwak HS (ed) Nano- and microencapsulation for foods. Wiley Blackwell, Chichester, pp 1–14

    Chapter  Google Scholar 

  • Lam RSH, Nickerson MT (2013) Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chem 141(2):975–984

    Article  PubMed  CAS  Google Scholar 

  • Laohasongkrama K, Mahamaktudsanee T, Chaiwanichsiri S (2011) Microencapsulation of Macadamia oil by spray drying. Proc Food Sci 1:1660–1665

    Article  CAS  Google Scholar 

  • Liang L, Tremblay-Hébert V, Subirade M (2011) Characterisation of the b-lactoglobulin/a-tocopherol complex and its impact on α-tocopherol stability. Food Chem 126:821–826

    Article  CAS  Google Scholar 

  • Liu J, Willför S, Xun C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5(1):31–61

    Article  CAS  Google Scholar 

  • Lu W, Kelly A, Miao S (2016) Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol 47:1–9

    Article  CAS  Google Scholar 

  • Luna-Guevara JJ, Ochoa-Velasco CE, Hernández-Carranza P, Guerrero-Beltrán JA (2017) Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Struct 12:26–32

    Article  Google Scholar 

  • Lupo B, Maestro A, Gutiérrez JM, González C (2015) Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: comparison of two gelation mechanisms. Food Hydrocoll 49:24–34

    Article  CAS  Google Scholar 

  • McClements DJ (2012) Requirements for food ingredient and nutraceutical delivery systems. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead, Cambridge, pp 3–18

    Chapter  Google Scholar 

  • Mishra MK (2016) Overview of encapsulation and controlled release. In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Taylor & Francis Group, Boca Raton, pp 3–22

    Google Scholar 

  • Moura S, Berling C, Germer S, Alvim I, Hubinger M (2018) Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles. Food Chem 241:317–327

    Article  PubMed  CAS  Google Scholar 

  • Nagavarma BVN, Hemant KSY, Ayaz AVLS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res 5(3):16–23

    CAS  Google Scholar 

  • Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–19

    Article  CAS  Google Scholar 

  • Nazzaro F, Orlando P, Fratianni F, Coppola R (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23(2):182–186

    Article  PubMed  CAS  Google Scholar 

  • Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Proc Food Sci 1:1806–1815

    Article  CAS  Google Scholar 

  • Nesterenko A, Alric I, Silvestre F, Durrieu V (2014) Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocoll 38:172–179

    Article  CAS  Google Scholar 

  • Okuro PK, Junior FEM, Silvia Favaro-Trindade CS (2013) Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol Biotechnol 51(2):171–182

    CAS  Google Scholar 

  • Olaiya C, Soetan K, Esan A (2016) The role of nutraceuticals, functional foods and value added food products in the prevention and treatment of chronic diseases. Afr J Food Sci 10(10):185–193

    Article  CAS  Google Scholar 

  • Oliveira A, Guimarães K, Cerize N, Tunussi A, Poço J (2013) Nano spray drying as an innovative technology for encapsulating hydrophilic active pharmaceutical ingredients (API). Nanomed Nanotechnol 4(6):1–6

    Google Scholar 

  • Onwulata C (2012) Encapsulation of new active ingredients. Annu Rev Food Sci Technol 3:183–202

    Article  PubMed  CAS  Google Scholar 

  • Oxley J (2016) Process-selection criteria. In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–34

    Google Scholar 

  • Patel AR, Heussen PCM, Hazekamp J, Drost E, Velikov KP (2012) Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem 133(2):423–429

    Article  PubMed  CAS  Google Scholar 

  • Pedroso DL, Thomazini M, Heinemann RJB, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray chilling. Int Dairy J 26(2):127–132

    Article  CAS  Google Scholar 

  • Peng Y, Meng Q, Zhou J, Chen B, Xi J, Long P, Zhang L, Hou R (2018) Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 242:527–532

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Masiá R, López-Nicolás R, Periago MJ, Ros G, Lagaron JM, López-Rubio A (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133

    Article  PubMed  CAS  Google Scholar 

  • Pool H, Mendoza S, Xiao H, McClements DJ (2013) Encapsulation and release of hydrophobic bioactive components in nanoemulsion based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct 4:162–174

    Article  PubMed  CAS  Google Scholar 

  • Qiu C, Wang B, Wang Y, Teng Y (2017) Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. Food Hydrocoll 69:466–472

    Article  CAS  Google Scholar 

  • Quirós-Sauceda AE, Ayala-Zavala JF, Olivas GI, González-Aguilar GA (2014) Edible coatings as encapsulating matrices for bioactive compounds: a review. J Food Sci Technol 51(9):1674–1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajabi H, Ghorbani M, Jafari SM, Sadeghi A, Rajabzadeh Q (2015) Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll 51:327–337

    Article  CAS  Google Scholar 

  • Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83

    Article  CAS  Google Scholar 

  • Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, Mohammed NN (2012) Melt extrusion: process to product. Expert Opin Drug Deliv 9(1):105–125

    Article  PubMed  CAS  Google Scholar 

  • Riaz QUA, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244

    Article  PubMed  Google Scholar 

  • Rosas-Flores W, Ramos-Ramirez EG, Salazar-Montoya JA (2013) Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydr Polym 98:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 62:308–314

    Article  CAS  Google Scholar 

  • Serrano-Cruz MR, Villanueva-Carvajal A, Morales-Rosales EJ, Ramírez-Dávila JF, Dominguez-Lopez A (2013) Controlled release and antioxidant activity of Roselle (Hibiscus sabdariffa L.) extract encapsulated in mixtures of carboxymethyl cellulose, whey protein, and pectin. LWT Food Sci Technol 50(2):554–561

    Article  CAS  Google Scholar 

  • Sessa M, Balestrieri ML, Ferrari G, Servillo L, Castaldo D, D’Onofrio N, Donsi F, Tsao R (2014) Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 147:42–50

    Article  PubMed  CAS  Google Scholar 

  • Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J Polym Hindawi 2014:1–13

    Article  CAS  Google Scholar 

  • Silva MP, Tulini FL, Martins E, Penning M, Fávaro-Trindade CS, Poncelet D (2018) Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT Food Sci Technol 89:392–399

    Article  CAS  Google Scholar 

  • Srivastava Y, Semwal AD, Sharma GK (2013) Application of various chemical and mechanical microencapsulation techniques in food sector—a review. Int J Food Ferment Technol 3(1):1–13

    Article  Google Scholar 

  • Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L (2017) Controlling the morphology of ceramic and composite powders obtained via spray drying—a review. Ceram Int 43(15):11543–11551

    Article  CAS  Google Scholar 

  • Suganya V, Anuradha V (2017) Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res 9(3):233–239

    Article  Google Scholar 

  • Sun-Waterhouse D, Penin-Peyta L, Wadhwa SS, Waterhouse GIN (2012) Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology. Food Bioprocess Technol 5(8):3090–3102

    Article  CAS  Google Scholar 

  • Tolve R, Galgano F, Caruso MC, Tchuenbou-Magaia FL, Condelli N, Favati F, Zhang Z (2016) Encapsulation of health-promoting ingredients: applications in foodstuffs. Int J Food Sci Nutr 67(8):888–918

    Article  PubMed  CAS  Google Scholar 

  • Toniazzo T, Berbel IF, Cho S, Fávaro-Trindade CS, Moraes ICF, Pinho SC (2014) β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: physico-chemical stability and feasibility of application in yogurt. LWT Food Sci Technol 59(2):1265–1273

    Article  CAS  Google Scholar 

  • Torres O, Murray B, Sarkar A (2016) Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol 55:98–108

    Article  CAS  Google Scholar 

  • Varankovich NV, Khan NH, Nickerson MT, Kalmokoff M, Korber DR (2015) Evaluation of pea protein-polysaccharide matrices for encapsulation of acid-sensitive bacteria. Food Res Int 70:118–124

    Article  CAS  Google Scholar 

  • Vincekovic M, Viskic M, Juric S, Giacometti J, Kovacevic DB, Putnik P, Donsi F, Barba FJ, Jambrak AR (2017) Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 69(Part A):1–12

    Article  CAS  Google Scholar 

  • Wang Z, Ju X, He R, Yuan J, Wang L (2015) The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules. Food Bioprocess Technol 8(6):1305–1318

    Article  CAS  Google Scholar 

  • Wichchukit S, Oztop MH, McCarthy MJ, McCarthy KL (2013) Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocoll 33:66–73

    Article  CAS  Google Scholar 

  • Xu W, Jin W, Zhang C, Li Z, Lin L, Huang Q, Ye S, Li B (2014) Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. Food Res Int 59:61–66

    Article  CAS  Google Scholar 

  • Yang S, Mao XY, Li FF, Zhang D, Leng XJ, Ren FZ, Teng GX (2012) The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol 235:91–97

    Article  CAS  Google Scholar 

  • Ydjedd S, Bouriche S, López-Nicolás R, Sánchez-Moya T, Frontela-Saseta C, Ros-Berruezo G, Rezqui F, Louaileche H, Kati DE (2017) Effect of in vitro Gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J Agric Food Chem 65(4):827–835

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Chi H (2018) A review of recent progress in drug and protein encapsulation: approaches, applications and challenges. Mater Sci Eng C Mater Biol Appl 83:233–246

    Article  PubMed  CAS  Google Scholar 

  • Yonekura L, Sun H, Soukoulis C, Fisk I (2014) Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: technological characterization, storage stability and survival after in vitro digestion. J Funct Food 6:205–214

    Article  CAS  Google Scholar 

  • Zaky A, Elbakry A, Ehmer A, Breuning M, Goepferich A (2010) The mechanism of protein release from triglyceride microspheres. J Control Release 147:202–210

    Article  PubMed  CAS  Google Scholar 

  • Ziani K, Fang Y, McClements DJ (2012) Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem 134:1106–1112

    Article  PubMed  CAS  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedović N (eds) Encapsulation technologies for active food. Sciences and Business, Israel, pp 3–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arredondo-Ochoa, T., Regalado-González, C., Martín-Belloso, O. (2018). Current Processing Methods in the Development of Micro- and Nanoencapsulation from Edible Polymers. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_16

Download citation

Publish with us

Policies and ethics