Skip to main content

The Green Computing Continuum: The OPERA Perspective

  • Chapter
  • First Online:
Hardware Accelerators in Data Centers

Abstract

Cloud computing is an emerging paradigm in which users’ access to a shared pool of computing resources is dynamically allocated (i.e. ubiquitous computing service), depending on their specific needs. Such paradigm exploits the infrastructural capabilities of modern data centers to provide computational power and storage space required to satisfy modern application demands. The seamless integration of Cyber-Physical Systems (CPS) and Cloud infrastructures allows the effective processing of the huge amount of data collected by smart embedded systems, towards the creation of new services for the end users. However, trying to continuously increase data center capabilities comes at the cost of an increased energy consumption. The OPERA project aims at bringing innovative solutions to increase the energy efficiency of Cloud infrastructures, by leveraging on modular, high-density, heterogeneous and low-power computing systems, spanning data center servers and remote CPS. The effectiveness of the proposed solutions is demonstrated with key scenarios: a road traffic monitoring application, the deployment of a virtual desktop infrastructure, and the deployment of a compact data center on a truck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David F, Jackson H, Sam G, Rajappa M, Anil K, Pinkesh S, Nagappan R (2008) Dynamic data center power management: trends, issues, and solutions. Intel Technol J 12(1)

    Google Scholar 

  2. Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40:33–37

    Article  Google Scholar 

  3. Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synthesis lectures on computer architecture 8(3):1–154

    Google Scholar 

  4. Greenberg A, Hamilton J, Maltz DA, Patel P (2008) The cost of a cloud: research problems in data center networks. In: ACM SIGCOMM computer communication review, vol 39, no 1. ACM, pp 68–73

    Google Scholar 

  5. Fan X, Weber W-D, Barroso LA (2007) Power provisioning for a warehouse-sized computer. In: ACM SIGARCH computer architecture news, vol 35. ACM, pp 13–23

    Google Scholar 

  6. Pearce M, Zeadally S, Hunt R (2013) Virtualization: issues, security threats, and solutions. In: ACM Computing Surveys (CSUR), vol 45, no 2. ACM, p 17

    Google Scholar 

  7. Srikantaiah S, Kansal A, Zhao F (2008) Energy aware consolidation for cloud computing. In: Proceedings of the 2008 conference on Power aware computing and systems, vol 10

    Google Scholar 

  8. Vogels W (2008) Beyond server consolidation. Queue 6(1):20–26

    Article  Google Scholar 

  9. http://www.operaproject.eu

  10. Kaur T, Chana I (2015) Energy efficiency techniques in cloud computing: a survey and taxonomy. In: ACM computing surveys (CSUR), vol 48, no 2. ACM, pp 22

    Google Scholar 

  11. Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Fut Gen Comput Syst (FGCS) 28(5):755–768

    Article  Google Scholar 

  12. Murtazaev A, Oh S (2011) Sercon: server consolidation algorithm using live migration of virtual machines for green computing. IETE Tech Rev 28(3):212–231

    Article  Google Scholar 

  13. Van HN, Tran FD, Menaud JM (2010) Performance and power management for cloud infrastructures. In: IEEE 3rd international conference on cloud computing (CLOUD). IEEE, pp 329–336

    Google Scholar 

  14. Zhang Q, Zhu Q, Boutaba R (2011) Dynamic resource allocation for spot markets in cloud computing environments. In: Fourth IEEE international conference on utility and cloud computing (UCC). IEEE, pp 178–185

    Google Scholar 

  15. Ardagna D, Panicucci B, Passacantando M (2011) A game theoretic formulation of the service provisioning problem in cloud systems. In: Proceedings of the 20th international conference on World wide web. ACM, pp 177–186

    Google Scholar 

  16. Quang-Hung N, Nien PD, Nam NH, Tuong NH, Thoai N (2013) A genetic algorithm for power-aware virtual machine allocation in private cloud. Informat Commun Technol. Springer, pp 183–191

    Google Scholar 

  17. Li L (2009) An optimistic differentiated service job scheduling system for cloud computing service users and providers. In: Third international conference on multimedia and ubiquitous engineering, MUE’09. IEEE, pp 295–299

    Google Scholar 

  18. Li K, Tang X, Li K (2014) Energy-efficient stochastic task scheduling on heterogeneous computing systems. In: IEEE transactions on parallel and distributed systems, vol 25, no 11. IEEE, pp 2867–2876

    Google Scholar 

  19. Ghribi C, Hadji M, Zeghlache D (2013) Energy efficient vm scheduling for cloud data centers: exact allocation and migration algorithms. In: 13th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGrid). IEEE, pp 671–678

    Google Scholar 

  20. Infrastructure—VMware (2006) Resource management with VMware DRS’. In: VMware Whitepaper

    Google Scholar 

  21. Shaobin Z, Hongying H (2012) Improved PSO-based task scheduling algorithm in cloud computing. J Informat Comput Sci 9(13):3821–3829

    Google Scholar 

  22. Liu Z, Wang X (2012) A PSO-based algorithm for load balancing in virtual machines of cloud computing environment. In: International conference in swarm intelligence. Springer, pp 142–147

    Google Scholar 

  23. Zhang H, Li P, Zhou Z, Yu X (2012) A PSO-based hierarchical resource scheduling strategy on cloud computing. In: International conference on trustworthy computing and services. Springer, pp 325–332

    Google Scholar 

  24. Gürsun G, Crovella M, Matta I (2011) Describing and forecasting video access patterns. In: Proceedings of IEEE INFOCOM. IEEE, pp 16–20

    Google Scholar 

  25. Tirado, JM, Higuero D, Isaila F, Carretero J (2011) Predictive data grouping and placement for cloud-based elastic server infrastructures. In: Proceedings of the 11th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE Computer Society, pp 285–294

    Google Scholar 

  26. Chandra A, Gong W, Shenoy P (2003) Dynamic resource allocation for shared data centers using online measurements. In: International Workshop on Quality of Service. Springer, pp 381–398

    Google Scholar 

  27. Kumar AS, Mazumdar S (2016) Forecasting HPC workload using ARMA models and SSA. In: Proceedings of the 15th IEEE conference on information technology (ICIT). IEEE, pp 1–4

    Google Scholar 

  28. Calheiros RN, Masoumi E, Ranjan R, Buyya R (2015) Workload prediction using arima model and its impact on cloud applications’ qos. In: IEEE transactions on cloud computing, vol 3, no 4. IEEE, pp 449–458

    Google Scholar 

  29. Iqbal W, Dailey MN, Carrera D, Janecek P (2011) Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Fut Generat Comput Syst vol 27, no 6. Elsevier, pp 871–879

    Google Scholar 

  30. Beloglazov A, Buyya R (2010) Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In: Proceedings of the 8th international workshop on middleware for grids, clouds and e-science ACM. vol 4

    Google Scholar 

  31. Crago SP, Walters JP (2015) heterogeneous cloud computing: the way forward. IEEE Comput 48(1):59–61

    Google Scholar 

  32. Andrew C, Jongsok C, Mark A, Victor Z, Ahmed K, Tomasz C, Stephen DB, Anderson JH (2013) LegUp: an open-source high-level synthesis tool for FPGA-based processor/accelerator systems. ACM Trans Embed Comput Syst 13(2)

    Google Scholar 

  33. Villarreal J, Park A, Najjar W, Halstead R (2010) Designing modular hardware accelerators in C with ROCCC 2.0. In: 18th IEEE annual international symposium on field-programmable custom computing machines. IEEE, pp 127–134

    Google Scholar 

  34. Munshi A (2009) The OpenCL specification. In: IEEE hot chips 21 symposium (HCS), pp 1–314

    Google Scholar 

  35. Lavasani M, Angepat H, Chiou D (2014) An FPGA-based in-line accelerator for memcached. IEEE Comput Architect Lett 13(2)

    Google Scholar 

  36. Putnam A et al (2014) A reconfigurable fabric for accelerating large-scale datacenter services. In: ACM/IEEE 41st international symposium on computer architecture (ISCA). Minneapolis, MN

    Google Scholar 

  37. Becher A, Bauer F, Ziener D, Teich J (2014) Energy-aware SQL query acceleration through FPGA-based dynamic partial reconfiguration. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL), Munich

    Google Scholar 

  38. Traber A et al (2016) PULPino: a small single-core RISC-V SoC. In: RISC-V workshop

    Google Scholar 

  39. Ickes N et al (2011) A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip. In: Proceedings of the ESSCIRC, Helsinki

    Google Scholar 

  40. http://www.rapid-project.eu

  41. Montella R, Ferraro C, Kosta S, Pelliccia V, Giunta G (2016) Enabling android-based devices to high-end GPGPUs. In: Algorithms and architectures for parallel processing (ICA3PP)—lecture notes in computer science, vol 10048. Springer

    Google Scholar 

  42. Ciccia S et al (2015) Reconfigurable antenna system for wireless applications. In: IEEE 1st international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI), Turin, pp 111–116

    Google Scholar 

  43. Evans D (2011) The internet of things how the next evolution of the internet is changing everything. In: CISCO white papers

    Google Scholar 

  44. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for vm-based cloudlets in mobile computing. IEEE Pervas Comput 8(4):14–23

    Google Scholar 

  45. Vaquero LM, Rodero-Merino L (2014) Finding your way in the fog: towards a comprehensive definition of fog computing. In: ACM SIGCOMM Computer Communication Review, vol 44, no 5. ACM, pp 27–32

    Google Scholar 

  46. Willis DF, Dasgupta A, Banerjee S (2014) Paradrop: a multi-tenant platform for dynamically installed third party services on home gateways. In:Proceedings of the 2014 ACM SIGCOMM workshop on distributed cloud computing. ACM, pp 43–44

    Google Scholar 

  47. Martins J, Ahmed M, Raiciu C, Olteanu V, Honda M, Bifulco R, Huici F (2014) ClickOS and the art of network function virtualization. In: Proceedings of the 11th USENIX conference on networked systems design and implementation. USENIX Association, pp 459–473

    Google Scholar 

  48. Patel M, Naughton B, Chan C, Sprecher N, Abeta S, Neal A et al (2014) Mobile-edge computing introductory technical white paper. In: Mobile-edge Computing (MEC) industry initiative, white Paper

    Google Scholar 

  49. Hwang K, Dongarra J, Fox GC (2013) Distributed and cloud computing: from parallel processing to the internet of things. Morgan Kaufmann

    Google Scholar 

  50. European-Commission Energy efficiency directive. https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directive

  51. Afman M Energiegebruik Nederlandse commerciele datacenters. http://www.cedelft.eu/publicatie/energy_consumption_of_dutch_commercial_datacentres%2C_2014-2017/1606

  52. Huan L Host server CPU utilization in Amazon EC2 cloud. https://huanliu.wordpress.com/2012/02/17/host-server-cpu-utilization-in-amazon-ec2-cloud/

  53. Khronos Group The open standard for parallel programming of heterogeneous systems. https://www.khronos.org/opencl/

  54. Stuecheli J, Blaner B, Johns CR, Siegel MS (2015) CAPI: a coherent accelerator processor interface. IBM J Res Developm 59(1)

    Google Scholar 

  55. Altera Arria 10 FPGAs. https://www.altera.com/products/fpga/arria-series/arria-10/overview.html

  56. Thones J (2015) Microservices. IEEE Softw 32(1)

    Google Scholar 

  57. Organization for the Advancement of Structured Information Standards (2015) OASIS topology and orchestration specification for cloud applications (TOSCA)

    Google Scholar 

  58. Lefurgy C, Wang X, Ware M (2007) Server-level power control. In: Proceedings of the IEEE international conference on autonomic computing. IEEE

    Google Scholar 

  59. Roy N, Dubey A, Gokhale A (2011) Efficient autoscaling in the cloud using predictive models for workload forecasting. In: IEEE international conference on cloud computing (CLOUD). IEEE, pp 500–507

    Google Scholar 

  60. Chieu TC, Mohindra A, Karve AA, Segal A (2009) Dynamic scaling of web applications in a virtualized cloud computing environment. In: IEEE international conference on e-Business engineering, ICEBE’09. IEEE, pp 281–286

    Google Scholar 

  61. Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and opportunities. In: Proceedings of the 1st workshop on automated control for data centers and clouds. ACM, pp 13–18

    Google Scholar 

  62. Yaniv I, Dan T (2016) Hash, don’t cache (the page table). Sigmetrics

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union H2020 program through the OPERA project (grant no. 688386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Scionti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scionti, A. et al. (2019). The Green Computing Continuum: The OPERA Perspective. In: Kachris, C., Falsafi, B., Soudris, D. (eds) Hardware Accelerators in Data Centers. Springer, Cham. https://doi.org/10.1007/978-3-319-92792-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92792-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92791-6

  • Online ISBN: 978-3-319-92792-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics