Skip to main content

Orthobiologics: Today and Tomorrow

  • Chapter
  • First Online:
Cartilage Restoration

Abstract

Biologic-based therapy for cartilage pathology has gained considerable recognition due to being minimally invasive, offering capacity for faster healing, and potential for rapid recovery. These therapies include tissue-specific cell culture, marrow-venting procedures, platelet-rich plasma (PRP), bone marrow aspirate concentrate (BMAC), and cell-based therapies. Reports thus far have yielded promising results with a relatively robust safety profile. Although important advances have been made in the field, further well-designed clinical trials are required. Current limitations include their high cost and limited long-term evidence of efficacy. This chapter aims to review the existing literature for biologic-based treatment options for cartilage and identify potential avenues for development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaPrade RF, Geeslin AG, Murray IR, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 1: biologics overview, ligament injury, Tendinopathy. Am J Sports Med. 2016;44(12):3270–83.

    Article  PubMed  Google Scholar 

  2. Zhu Y, Yuan M, Meng HY, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage/OARS, Osteoarthritis Res Soc. 2013;21:1627–37.

    Article  CAS  Google Scholar 

  3. Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy – future or trend? Arthritis Res Ther. 2012;14:219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:225–8.

    Article  CAS  PubMed  Google Scholar 

  5. Rughetti A, Giusti I, D'Ascenzo S, et al. Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfus. 2008;6:12–7.

    PubMed  PubMed Central  Google Scholar 

  6. Fleming BC, Proffen BL, Vavken P, Shalvoy MR, Machan JT, Murray MM. Increased platelet concentration does not improve functional graft healing in bio-enhanced ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2015;23:1161–70.

    Article  PubMed  Google Scholar 

  7. Weibrich G, Hansen T, Kleis W, Buch R, Hitzler WE. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004;34:665–71.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida R, Cheng M, Murray MM. Increasing platelet concentration in platelet-rich plasma inhibits anterior cruciate ligament cell function in three-dimensional culture. J Orthop Res: Off Publ Orthop Res Soc. 2014;32:291–5.

    Article  CAS  Google Scholar 

  9. Kraeutler MJ, Garabekyan T, Mei-Dan O. The use of platelet-rich plasma to augment conservative and surgical treatment of hip and pelvic disorders. Muscles Ligaments Tendons J. 2016;6:410–9.

    PubMed  PubMed Central  Google Scholar 

  10. Riboh JC, Saltzman BM, Yanke AB, Fortier L, Cole BJ. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44:792–800.

    Article  PubMed  Google Scholar 

  11. Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41:356–64.

    Article  PubMed  Google Scholar 

  12. Cerza F, Carni S, Carcangiu A, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40:2822–7.

    Article  PubMed  Google Scholar 

  13. Sanchez M, Fiz N, Azofra J, et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy:J. Arthrosc. Relat. Surg.: Off Publ Arthroscopy Assoc North Am Int Arthroscopy Assoc. 2012;28:1070–8.

    Article  Google Scholar 

  14. Filardo G, Di Matteo B, Di Martino A, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43:1575–82.

    Article  PubMed  Google Scholar 

  15. Filardo G, Kon E, Di Martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chahla J, Cinque ME, Piuzzi NS, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopedic literature. J Bone Joint Surg Am. 2017. ePub Ahead of Print.

    Google Scholar 

  17. Wolfstadt JI, Cole BJ, Ogilvie-Harris DJ, Viswanathan S, Chahal J. Current concepts: the role of mesenchymal stem cells in the management of knee osteoarthritis. Sports health. 2015;7:38–44.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Abrams GD, Frank RM, Fortier LA, Cole BJ. Platelet-rich plasma for articular cartilage repair. Sports Med Arthrosc. 2013;21:213–9.

    Article  PubMed  Google Scholar 

  19. Duif C, Vogel T, Topcuoglu F, Spyrou G, von Schulze Pellengahr C, Lahner M. Does intraoperative application of leukocyte-poor platelet-rich plasma during arthroscopy for knee degeneration affect postoperative pain, function and quality of life? A 12-month randomized controlled double-blind trial. Arch Orthop Trauma Surg. 2015;135:971–7.

    Article  PubMed  Google Scholar 

  20. Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med. 2016;44:664–71.

    Article  PubMed  Google Scholar 

  21. Battaglia M, Guaraldi F, Vannini F, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013;36:e1501–8.

    Article  PubMed  Google Scholar 

  22. Liu J, Song W, Yuan T, Xu Z, Jia W, Zhang C. A comparison between platelet-rich plasma (PRP) and hyaluronate acid on the healing of cartilage defects. PLoS One. 2014;9:e97293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Milano G, Deriu L, Sanna Passino E, et al. The effect of autologous conditioned plasma on the treatment of focal chondral defects of the knee. An experimental study. Int J Immunopathol Pharmacol. 2011;24:117–24.

    Article  CAS  PubMed  Google Scholar 

  24. Goodrich LR, Chen AC, Werpy NM, et al. Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects: does it enhance repair? J Bone Joint Surg Am. 2016;98:23–34.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hernigou P, Homma Y, Flouzat Lachaniette CH, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013;37:2279–87.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fortier LA, Potter HG, Rickey EJ, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92:1927–37.

    Article  PubMed  Google Scholar 

  28. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.

    PubMed  CAS  Google Scholar 

  29. Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.

    Article  CAS  PubMed  Google Scholar 

  30. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes. Orthop J Sports Med. 2016;4:2325967115625481.

    PubMed  PubMed Central  Google Scholar 

  31. Oliver KS, Bayes M, Crane D, Pathikonda C. Clinical outcome of bone marrow concentrate in knee osteoarthritis. J Prolotherapy. 2015;7:e937–3946.

    Google Scholar 

  32. Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc. 2016.

    Article  PubMed  Google Scholar 

  33. Wehling P, Moser C, Frisbie D, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21:323–32.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JD, Lee GW, Jung GH, et al. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur J Orthop Surg Traumatol. 2014;24:1505–11.

    Article  PubMed  Google Scholar 

  35. Hauser RA, Orlofsky A. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:65–72.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed Res Int. 2014;2014:370621.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O'Connor MI. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45:82–90.

    Article  PubMed  Google Scholar 

  38. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44:2846–54.

    Article  PubMed  Google Scholar 

  39. Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee. 2015;22:30–5.

    Article  CAS  PubMed  Google Scholar 

  40. Krych AJ, Nawabi DH, Farshad-Amacker NA, et al. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control. Am J Sports Med. 2016;44:91–8.

    Article  PubMed  Google Scholar 

  41. Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ 3rd. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2016;

    Article  PubMed  Google Scholar 

  42. Skowronski J, Skowronski R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane--results. Ortop Traumatol Rehabil. 2013;15:69–76.

    Article  PubMed  Google Scholar 

  43. Skowronski J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells - results. Ortop Traumatol Rehabil. 2013;15:195–204.

    Article  PubMed  Google Scholar 

  44. Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon. Orthopedics. 2016;39:e715–23.

    Article  PubMed  Google Scholar 

  45. Chahla J, Piuzzi NS, Mitchell JJ, et al. Intra-articular cellular therapy for osteoarthritis and focal cartilage defects of the knee: a systematic review of the literature and study quality analysis. J Bone Joint Surg Am. 2016;98:1511–21.

    Article  PubMed  Google Scholar 

  46. Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular implantation of mesenchymal stem cells, part 1: a review of the literature for prevention of postmeniscectomy osteoarthritis. Orthop J Sports Med. 2017;5:2325967116680815.

    PubMed  PubMed Central  Google Scholar 

  47. Kraeutler MJ, Mitchell JJ, Chahla J, McCarty EC, Pascual-Garrido C. Intra-articular implantation of mesenchymal stem cells, part 2: a review of the literature for meniscal regeneration. Orthop J Sports Med. 2017;5:2325967116680814.

    PubMed  PubMed Central  Google Scholar 

  48. Piuzzi NS, Chahla J, Schrock JB, et al. Evidence for the use of cell-based therapy for the treatment of osteonecrosis of the femoral head: a systematic review of the literature. J Arthroplast. 2017;32:1698–708.

    Article  Google Scholar 

  49. Muschler GF, Midura RJ. Connective tissue progenitors: practical concepts for clinical applications. Clin Orthop Relat Res. 2002;395:66–80.

    Article  Google Scholar 

  50. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990;110:1001–20.

    PubMed  CAS  Google Scholar 

  51. Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant. 2016;25:937–50.

    Article  PubMed  Google Scholar 

  52. Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop. 2016;7:149–55.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Zlotnicki JP, Geeslin AG, Murray IR, et al. Biologic treatments for sports injuries II think tank-current concepts, future research, and barriers to advancement, part 3: articular cartilage. Orthop J Sports Med. 2016;4:2325967116642433.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  Google Scholar 

  55. Ruetze M, Richter W. Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity. Expert Rev Mol Med. 2014;16:e9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wu L, Cai X, Zhang S, Karperien M, Lin Y. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J Cell Physiol. 2013;228:938–44.

    Article  CAS  PubMed  Google Scholar 

  57. Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.

    Article  PubMed  Google Scholar 

  58. LaPrade RF, Dragoo JL, Koh JL, Murray IR, Geeslin AG, Chu CR. AAOS research symposium updates and consensus: biologic treatment of orthopedic injuries. J Am Acad Orthop Surg. 2016;24:e62–78.

    Article  PubMed  Google Scholar 

  59. Jang KM, Lee JH, Park CM, Song HR, Wang JH. Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc. 2014;22:1434–44.

    Article  PubMed  Google Scholar 

  60. Jung M, Kaszap B, Redohl A, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant. 2009;18:923–32.

    Article  PubMed  Google Scholar 

  61. Nam HY, Karunanithi P, Loo WC, et al. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther. 2013;15:R129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Elisseeff J, Puleo C, Yang F, Sharma B. Advances in skeletal tissue engineering with hydrogels. Orthod Craniofac Res. 2005;8:150–61.

    Article  CAS  PubMed  Google Scholar 

  63. Castagnini F, Pellegrini C, Perazzo L, Vannini F, Buda R. Joint sparing treatments in early ankle osteoarthritis: current procedures and future perspectives. J Exp Orthop. 2016;3:3.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Chen C, Bang S, Cho Y, et al. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017.

    Google Scholar 

  66. Uematsu K, Hattori K, Ishimoto Y, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26:4273–9.

    Article  CAS  PubMed  Google Scholar 

  67. Thiem A, Bagheri M, Grosse-Siestrup C, Zehbe R. Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture – from in vitro to in vivo testing. Mater Sci Eng C Mater Biol Appl. 2016;62:585–95.

    Article  CAS  PubMed  Google Scholar 

  68. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 2008;14:149–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  70. Matsumoto T, Kubo S, Meszaros LB, et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 2008;58:3809–19.

    Article  CAS  PubMed  Google Scholar 

  71. Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthr Cartil. 2010;18:705–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Chandran P, Le Y, Li Y, et al. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors. Leuk Res. 2015;39:486–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, Z.B., Chahla, J., LaPrade, R.F., Mandelbaum, B.R. (2018). Orthobiologics: Today and Tomorrow. In: Farr, J., Gomoll, A. (eds) Cartilage Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-77152-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77152-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77151-9

  • Online ISBN: 978-3-319-77152-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics