Skip to main content

Two-Photon Polymerization in Tissue Engineering

  • Chapter
  • First Online:
Polymer and Photonic Materials Towards Biomedical Breakthroughs

Abstract

In tissue engineering, three-dimensional scaffolds, which should ensure necessary mechanical and biological microenvironment and nutrient, oxygen and grow factor delivery to proliferating cells, are an essential element. They can be formed from polymeric, ceramic and hybrid materials via different techniques. Modern laser fabrication methods, which provide high accuracy of positioning and energy focusing and allow the precise porous scaffold formation, are particularly interesting. Two-photon polymerization is one of the most promising laser-based techniques and permits the use of a large material variety for scaffold fabrication with the possibility of controlling accurately their microarchitecture. While the number of studies on two-photon polymerization is constantly growing, it is crucial to provide a framework of its application in tissue engineering. Therefore, this chapter aims to describe recent achievements and examples of two-photon polymerization application in tissue engineering and to reveal the main trends in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2PP:

Two-photon polymerization

3D:

Three-dimensional

ECM:

Extracellular matrix

TE:

Tissue engineering

TPA:

Two-photon absorption

References

  1. A.C. Allori, A.M. Sailon, S.M. Warren, Biological basis of bone formation, remodeling, and repair-part I: Biochemical signaling molecules. Tissue Eng. Part B Rev. 14(3), 259–273 (2008)

    Article  Google Scholar 

  2. J.P. Santerre, K. Woodhouse, G. Laroched, et al., Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26, 7457–7470 (2005)

    Article  Google Scholar 

  3. H. Li, K. Xue, N. Konga, et al., Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells. Biomaterials 35, 3803–3818 (2014)

    Article  Google Scholar 

  4. W. Liu, J. Wei, Y. Chen, et al., Electrospinning of poly(l-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application. ACS Appl. Mater. Interfaces 5(3), 680–685 (2013a)

    Article  Google Scholar 

  5. Y. Liu, J. Lim, S.-H. Teoh, Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol. Adv. 31(5), 688–705 (2013b)

    Article  Google Scholar 

  6. M.M. Nava, M.T. Raimondi, R. Pietrabissa, Controlling self-renewal and differentiation of stem cells via mechanical cues. J Biomed Biotechnol 2012, 1 (2012). https://doi.org/10.1155/2012/797410

    Article  Google Scholar 

  7. P. Timashev, D. Kuznetsova, A. Koroleva, et al., Novel biodegradable star-shaped polylactide scaffolds for bone regeneration fabricated by two-photon polymerization. Nanomedicine 11, 1041 (2016a). https://doi.org/10.2217/nnm-2015-0022

    Article  Google Scholar 

  8. P.J.S. Bártolo, H. Almeida, Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technology 36(1), 1–9 (2009)

    Article  Google Scholar 

  9. M.T. Raimondi, S.M. Eaton, M.M. Nava, et al., Two-photon laser polymerization: From fundamentals to biomedical application in tissue engineering and regenerative medicine. J. Appl. Biomater. Biomech. 10(1), 55–65 (2012)

    Google Scholar 

  10. S. Farid, S. Shirazi, S. Gharehkhani, et al., A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16, 033502 (2015)

    Article  Google Scholar 

  11. K. Singh, B.R. Singh, H. Singh, Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyping J. 22(2), 281 (2016). https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  12. S.V. Murphy, A. Atala, 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014). https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  13. Carvalho C (2017) .There’s only one 3D–bioplotter. https://envisiontec.com/3d-printers/3d-bioplotter/. Accessed 26 Apr 2017

  14. BioBot (2017) What will you build. https://www.biobots.io/biobot-1/. Accessed 26 Apr 2017

  15. M. Malinauskas, M. Farsari, A. Piskarskas, et al., Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 533(1), 1–31 (2013)

    Article  Google Scholar 

  16. A. Koroleva, A.A. Gill, I. Ortega, et al., Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4, 025005 (2012a)

    Article  Google Scholar 

  17. A. Koroleva, S. Gittard, S. Schlie, et al., Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization–micromolding technique. Biofabrication 4, 015001 (2012b)

    Article  Google Scholar 

  18. J. Serbin, A. Egbert, A. Ostendorf, et al., Femtosecond laser-induced two-photon polymerization of organic-inorganic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303 (2003)

    Article  Google Scholar 

  19. M. Emons, K. Obata, T. Binhammer, et al., Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Opt. Mater. Express 2(7), 942–947 (2012)

    Article  Google Scholar 

  20. A. Ovsianikov, A. Ostendorf, B. Chichkov, Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl. Surf. Sci. 253(15), 6599–6602 (2007)

    Article  Google Scholar 

  21. A. Koroleva, A. Deiwick, A. Nguyen, et al., Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic- inorganic scaffolds produced by two-photon polymerization technique. PLoS One 10(2), e0118164 (2015)

    Article  Google Scholar 

  22. F. Jipa, M. Zamfirescu, A. Velea, et al., Femtosecond laser lithography in organic and non-organic materials, in Updates in Advanced Lithography, ed. by S. Hosaka (Ed), (InTech, 2013). https://doi.org/10.5772/56579

  23. P. Saeta, J.K. Wang, Y. Siegal, et al., Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991)

    Article  Google Scholar 

  24. C. Heller, N. Pucher, B. Seidl, et al., One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift. J. Polym. Sci. A Polym. Chem. 45, 3280–3291 (2007)

    Article  Google Scholar 

  25. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997)

    Article  Google Scholar 

  26. S. Turunen, E. Käpylä, M. Lähteenmäki, et al., Direct laser writing of microstructures for the growth guidance of human pluripotent stem cell derived neuronal cells. Opt. Lasers Eng. 55, 197–204 (2014)

    Article  Google Scholar 

  27. M.M. Nava, N. Di Maggio, T. Zandrini, et al., Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 11, 2836 (2016). https://doi.org/10.1002/term.2187

    Article  Google Scholar 

  28. S.J. Jhaveri, J.D. McMullen, R. Sijbesma, et al., Direct three-dimensional microfabrication of hydrogels via two-photon lithography in aqueous solution. Chem. Mater. 21(10), 2003–2006 (2009)

    Article  Google Scholar 

  29. J. Heitz, C. Plamadeala, M. Wiesbauer, et al., Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization. J. Biomed. Mater. Res. A 105, 891 (2016). https://doi.org/10.1002/jbm.a.35959

    Article  Google Scholar 

  30. S. Engelhardt, E. Hoch, K. Borchers, et al., Fabrication of 2D protein microstructures and 3D polymer–protein hybrid microstructures by two-photon polymerization. Biofabrication 3, 025003 (2011)

    Article  Google Scholar 

  31. B. Kaehr, R. Allen, D.J. Javier, et al., Guiding neuronal development with in situ microfabrication. PNAS 101(46), 16104–16108 (2004)

    Article  Google Scholar 

  32. S.K. Seidlits, C.E. Schmidt, J.B. Shear, High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv. Funct. Mater. 19, 3543–3551 (2009)

    Article  Google Scholar 

  33. A.K. Nguyen, S.D. Gittard, A. Koroleva, et al., Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen. Med. 8(6), 725–738 (2013)

    Article  Google Scholar 

  34. S. Huang, A.A. Heikal, W.W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002)

    Article  Google Scholar 

  35. J. Torgersen, X.-H. Qin, Z. Li, et al., Hydrogels for two-photon polymerization: A toolbox for mimicking the extracellular matrix. Adv. Funct. Mater. 23, 4542 (2013). https://doi.org/10.1002/adfm.201203880

    Article  Google Scholar 

  36. A. Cataldi, A.E. Corcione, M. Frigione, et al., Photocurable resin/microcrystalline cellulose composites for wood protection: Physical-mechanical characterization. Prog. Org. Coat. 99, 230–239 (2016)

    Article  Google Scholar 

  37. J.-S. Choi, J. Seo, S.B. Khanc, et al., Effect of acrylic acid on the physical properties of UV-cured poly(urethane acrylate-co-acrylic acid) films for metal coating. Prog. Org. Coat. 71, 110–116 (2011)

    Article  Google Scholar 

  38. P. Kiruthika, R. Subasri, A. Jyothirmayi, et al., Effect of plasma surface treatment on mechanical and corrosion protection properties of UV-curable sol-gel based GPTS-ZrO2 coatings on mild steel. Surf. Coat. Technol. 204, 270–1276 (2010)

    Article  Google Scholar 

  39. S. Papilloud, D. Baudraz, Migration tests for substrates printed with UV ink systems in aqueous simulants. Prog. Org. Coat. 45, 231–237 (2002)

    Article  Google Scholar 

  40. C. Sow, B. Riedl, P. Blanchet, UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: Mechanical, optical, and thermal properties assessment. J. Coat. Technol. Res. 8, 211–221 (2011)

    Article  Google Scholar 

  41. A. Ovsianikov, V. Mironov, J. Stampfl, et al., Engineering 3D cell-culture matrices: Multiphoton processing technologies for biological and tissue engineering applications. Expert Rev. Med. Devices 9(6), 613–633 (2012)

    Article  Google Scholar 

  42. F. Hao, Z. Liu, M. Zhang, et al., Four new two-photon polymerization initiators with varying donor and conjugated bridge: Synthesis and two-photon activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 538–542 (2014)

    Article  Google Scholar 

  43. K.J. Schafer, J.M. Hales, M. Balu, et al., Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. 162, 497–502 (2004)

    Article  Google Scholar 

  44. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, et al., Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4, 288–299 (2011a)

    Article  Google Scholar 

  45. P.J. Campagnola, D.M. Delguidice, G.A. Epling, et al., 3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes. Macromolecules 33, 1511–1513 (2000)

    Article  Google Scholar 

  46. M. Farsari, G. Filippidis, K. Sambani, et al., Two-photon polymerization of an eosin Y-sensitized acrylate composite. J. Photochem. Photobiol. A Chem. 181, 132–135 (2006)

    Article  Google Scholar 

  47. S. Li, L. Li, F. Wu, et al., A water-soluble two-photon photopolymerization initiation system: Methylated--cyclodextrin complex of xanthene dye/aryliodonium salt. J. Photochem. Photobiol. A Chem. 203, 211–215 (2009)

    Article  Google Scholar 

  48. M. Malinauskas, P. Danilevicius, D. Baltriukiene˙, et al., 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser. Lithuanian J. Phys. 50(1), 75–82 (2010)

    Article  Google Scholar 

  49. P. Danilevičius, A. Žukauskas, G. Bičkauskaitė, et al., Laser-micro/nanofabricated 3D polymers for tissue engineering applications. Lat. J. Phys. Tech. Sci. 2, 32–43 (2011)

    Google Scholar 

  50. A. Doraiswamy, C. Jin, R.J. Narayan, et al., Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2, 267–275 (2006)

    Article  Google Scholar 

  51. A. Doraiswamy, A. Ovsianikov, S.D. Gittard, et al., Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials. J. Nanosci. Nanotechnol. 10, 6305–6312 (2010)

    Article  Google Scholar 

  52. K. Terzaki, M. Kissamitaki, A. Skarmoutsou, et al., Pre-osteoblastic cell response on three-dimensional, organic-inorganic hybrid material scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 101A, 2283 (2013). https://doi.org/10.1002/jbm.a.34516

    Article  Google Scholar 

  53. S.A. Skoog, A.K. Nguyen, G. Kumar, et al., Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth. Biointerphases 9(2), 029014 (2014)

    Article  Google Scholar 

  54. P.S. Timashev, K.N. Bardakova, N.V. Minaeva, et al., Compatibility of cells of the nervous system with structured biodegradable chitosan-based hydrogel matrices. Appl. Biochem. Microbiol. 52(5), 508–514 (2016b)

    Article  Google Scholar 

  55. M.V. Vedunova, P.S. Timashev, T.A. Mishchenko, et al., Formation of neural networks in 3D scaffolds fabricated by means of laser microstereolithography. Bull. Exp. Biol. Med. 161(4), 616–621 (2016)

    Article  Google Scholar 

  56. T. Weiß, R. Schade, T. Laube, et al., Two-photon polymerization of biocompatible photopolymers for microstructured 3D biointerfaces. Adv. Eng. Mater. 13(9), 264–273 (2011)

    Article  Google Scholar 

  57. A. Ovsianikov, M. Gruene, M. Pflaum, et al., Laser printing of cells into 3D scaffolds. Biofabrication 2, 014104 (2010)

    Article  Google Scholar 

  58. V. Melissinaki, A.A. Gill, I. Ortega, et al., Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3, 045005 (2011)

    Article  Google Scholar 

  59. A.A. Gill, Í. Ortega, S. Kelly, et al., Towards the fabrication of artificial 3D microdevices for neural cell networks. Biomed. Microdevices 17, 27–37 (2015)

    Article  Google Scholar 

  60. F. Claeyssens, E.A. Hasan, A. Gaidukeviciute, et al., Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5), 3219–3223 (2009)

    Article  Google Scholar 

  61. O. Kufelt, A. El-Tamer, C. Sehring, et al., Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15(2), 650–659 (2014)

    Article  Google Scholar 

  62. J.D. Pitts, P.J. Campagnola, G.A. Epling, et al., Submicron multiphoton free-form fabrication of proteins and polymers: Studies of reaction efficiencies and applications in sustained release. Macromolecules 33, 1514–1523 (2000)

    Article  Google Scholar 

  63. J.D. Pitts, A.R. Howell, R. Taboada, et al., New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: Bovine serum albumin and type 1 collagen. Photochem. Photobiol. 76(2), 135–144 (2002)

    Article  Google Scholar 

  64. R. Allen, R. Nielson, D.D. Wise, et al., Catalytic three-dimensional protein architectures. Anal. Chem. 77, 5089–5095 (2005)

    Article  Google Scholar 

  65. J.C. Harper, S.M. Brozik, C.J. Brinker, et al., Biocompatible microfabrication of 3D isolation chambers for targeted confinement of individual cells and their progeny. Anal. Chem. 84(21), 8985–8989 (2012)

    Article  Google Scholar 

  66. E.C. Spivey, E.T. Ritschdorff, J.L. Connell, et al., Multiphoton lithography of unconstrained three-dimensional protein microstructures. Adv. Funct. Mater. 23(3), 333–339 (2012)

    Article  Google Scholar 

  67. K. Kuetemeyer, G. Kensah, M. Heidrich, et al., Two-photon induced collagen cross-linking in bioartificial cardiac tissue. Opt. Express 19(17), 15996–16007 (2011)

    Article  Google Scholar 

  68. S. Basu, V. Rodionov, M. Terasaki, et al., Multiphoton-excited microfabrication in live cells via rose Bengal cross-linking of cytoplasmic proteins. Opt. Lett. 30(2), 159–161 (2005)

    Article  Google Scholar 

  69. L.P. Cunningham, M.P. Veilleux, P.J. Campagnola, Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express 14(19), 8613–8621 (2006)

    Article  Google Scholar 

  70. T.M. Hsieh, C.W.B. Ng, K. Narayanan, et al., Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials 31, 7648–7652 (2010)

    Article  Google Scholar 

  71. A. Marino, C. Filippeschi, G.G. Genchi, et al., The osteoprint: A bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater. 10, 4304–4313 (2014)

    Article  Google Scholar 

  72. T. Weiss, G. Hildebrand, R. Schade, et al., Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application. Eng. Life Sci. 9(5), 384–390 (2009)

    Article  Google Scholar 

  73. A. Ovsianikov, M. Malinauskas, S. Schlie, et al., Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater. 7, 967–974 (2011b)

    Article  Google Scholar 

  74. A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5), 363–408 (2012)

    Article  Google Scholar 

  75. C. Szpalski, M. Wetterau, J. Barr, et al., Bone tissue engineering: Current strategies and techniques—Part I: Scaffolds. Tissue Eng. Part B 18(4), 246–256 (2012)

    Article  Google Scholar 

  76. K.H. Choi, B.H. Choi, S.R. Park, et al., The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials 31, 5355–5365 (2010)

    Article  Google Scholar 

  77. K. Narayanan, K.J. Leck, S. Gao, et al., Three- dimensional reconstituted extracellular matrix scaffolds for tissue engineering. Biomaterials 30, 4309–4317 (2009)

    Article  Google Scholar 

  78. A.J. Engler, S. Sen, H.L. Sweeney, et al., Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Article  Google Scholar 

  79. C.B. Khatiwala, P.D. Kim, S.R. Peyton, et al., ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24(5), 886–898 (2009)

    Article  Google Scholar 

  80. E. Engel, E. Martínez, C.A. Mills, et al., Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates. Ann. Anat. 191(1), 136–144 (2009)

    Article  Google Scholar 

  81. E. Martinez, E. Engel, J.A. Planell, et al., Effects of artificial micro- and nano-structured surfaces on cell behavior. Ann. Anat. 191, 126–135 (2009)

    Article  Google Scholar 

  82. S. Martino, F. D'Angelo, I. Armentano, et al., Hydrogenated amorphous carbon nanopatterned film designs drive human bone marrow mesenchymal stem cell cytoskeleton architecture. Tissue Eng. Part A 15(10), 3139–3149 (2009)

    Article  Google Scholar 

  83. V.T. Shashkova, I.A. Matveeva, N.N. Glagolev, et al., Synthesis of polylactide acrylate derivatives for the preparation of 3D structures by photo-curing. Mendeleev Commun. 26, 418–420 (2016)

    Article  Google Scholar 

  84. M. Mihailescu, R.C. Popescu, A. Matei, Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy. Appl. Opt. 53(22), 4850–4858 (2014)

    Article  Google Scholar 

  85. M. Chatzinikolaidou, C. Pontikoglou, K. Terzaki, et al., Recombinant human bone morphogenetic protein 2 (rhBMP-2) immobilized on laser-fabricated 3D scaffolds enhance osteogenesis. Colloids Surf. B Biointerfaces 149(1), 233–242 (2017)

    Article  Google Scholar 

  86. A.V. Koroleva, D.S. Guseva, N.A. Konovalov, et al., Polylactide-based biodegradable scaffolds fabricated by two-photon polymerization for neurotransplantation. CTM 8(4), 23–28 (2016)

    Google Scholar 

  87. A. Marino, G. Ciofani, C. Filippeschi, et al., Two-photon polymerization of sub-micrometric patterned surfaces: Investigation of cell-substrate interactions and improved differentiation of neuron-like cells. ACS Appl. Mater. Interfaces 5, 13012–13021 (2013)

    Article  Google Scholar 

  88. P.S. Timashev, M.V. Vedunova, D. Guseva, et al., 3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed. Phys. Eng. Express 2(3), 1–8 (2016c)

    Article  Google Scholar 

  89. H. Hidai, H. Jeon, D.J. Hwang, et al., Self-standing aligned fiber scaffold fabrication by two photon photopolymerization. Biomed. Microdevices 11, 643–652 (2009)

    Article  Google Scholar 

  90. H. Jeon, E. Kim, C.P. Grigoropoulos, Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. Biomed. Microdevices 13, 107–115 (2011)

    Article  Google Scholar 

  91. A. Marino, J. Barsotti, G. de Vito, et al., Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Appl. Mater. Interfaces 7, 25574–25579 (2015)

    Article  Google Scholar 

  92. C.M. Cowan, Y.Y. Shi, O.O. Aalami, et al., Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22(5), 560–567 (2004)

    Article  Google Scholar 

  93. A. Banerjee, M. Arha, S. Choudhary, et al., The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27), 4695–4699 (2009)

    Article  Google Scholar 

  94. N.D. Leipzig, M.S. Shoichet, The effect of substrate stiffness on adult neural stemcell behavior. Biomaterials 30(36), 6867–6878 (2009)

    Article  Google Scholar 

  95. K. Saha, A.J. Keung, E.F. Irwin, Y. Li, et al., Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9), 4426–4438 (2008)

    Article  Google Scholar 

  96. E.K.F. Yim, S.W. Pang, K.W. Leong, Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 313(9), 1820–1829 (2007)

    Article  Google Scholar 

  97. L. Binan, C. Tendey, G. De Crescenzo, et al., Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials 35, 664–674 (2014)

    Article  Google Scholar 

  98. J. Mačiulaitis, M. Deveikytė, S. Rekštytė, et al., Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 7, 015015 (2015)

    Article  Google Scholar 

  99. A.R. Costa-Pinto, A.M. Martins, M.J. Castelhano-Carlos, et al., In vitro degradation and in vivo biocompatibility of chitosan–poly (butylene succinate) fiber mesh scaffolds. J. Bioactive Compatible Polym.: Biomed. Appl. 29(2), 137–151 (2014)

    Article  Google Scholar 

  100. C. de Oliveira Renó, N.C. Pereta, C.A. Bertran, et al., Study of in vitro degradation of brushite cements scaffolds. J. Mater. Sci. Mater. Med. 25, 2297–2303 (2014)

    Article  Google Scholar 

  101. N. Zhu, D. Cooper, X.B. Chen, et al., A study on the in vitro degradation of poly(l-lactide)/chitosan microspheres scaffolds. Front. Mater. Sci. 7, 76–82 (2013)

    Article  Google Scholar 

  102. Y. He, Y. Dong, F. Cui, et al., Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS One 10(8), e0135366 (2015)

    Article  Google Scholar 

  103. S.-H. Park, E.S. Gil, H. Shi, et al., Relationships between degradability of silk scaffolds and osteogenesis. Biomaterials 31(24), 6162–6172 (2010)

    Article  Google Scholar 

  104. J. Kim, K.S. Kim, G. Jiang, et al., In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 89(12), 1144–1153 (2008)

    Article  Google Scholar 

  105. S.H. Kim, J.H. Lee, H. Hyun, et al., Near-infrared fluorescence imaging for noninvasive trafficking of scaffold degradation. Sci. Rep. 3, 1198 (2013). https://doi.org/10.1038/srep01198

    Article  Google Scholar 

  106. J. Yang, Y. Zhang, S. Gautam, et al., Development of aliphatic biodegradable photoluminescent polymers. PNAS 106(25), 10086–10091 (2009)

    Article  Google Scholar 

  107. H.J. Kim, S. Lee, H.-W. Yun, et al., In vivo degradation profile of porcine cartilage-derived extracellular matrix powder scaffolds using a non-invasive fluorescence imaging method. J. Biomater. Sci. Polym. Ed. 27(2), 177–190 (2016)

    Article  Google Scholar 

  108. Y. Zhang, J. Yang, Design strategies for fluorescent biodegradable polymeric biomaterials. J. Mater. Chem. B 1, 132–148 (2013)

    Article  Google Scholar 

  109. Y. Zhang, F. Rossi, S. Papa, et al., Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater. 30, 188–198 (2016)

    Article  Google Scholar 

  110. S. Duan, S. Ma, Z. Huang, et al., Visualization of in vivo degradation of aliphatic polyesters by a fluorescent dendritic star macromolecule. Biomed. Mater. 10(6), 065003 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shpichka, A. et al. (2018). Two-Photon Polymerization in Tissue Engineering. In: Van Hoorick, J., Ottevaere, H., Thienpont, H., Dubruel, P., Van Vlierberghe, S. (eds) Polymer and Photonic Materials Towards Biomedical Breakthroughs. Micro- and Opto-Electronic Materials, Structures, and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-75801-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75801-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75800-8

  • Online ISBN: 978-3-319-75801-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics