Skip to main content

Biofuels from Microalgae: Bioethanol

  • Chapter
  • First Online:
Energy from Microalgae

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The industrial potential of ethanol has been tested early in 1800 to be used as an engine fuel after the invention of an internal combustion engine. Currently, there are three generations of bioethanol that have been flourished based on different feedstocks. The first-generation bioethanol is derived from fermentation of glucose contained in starch and/or sugar crops. USA and Brazil are the main producers of bioethanol worldwide utilizing corn and sugarcane, while potato, wheat, and sugar beet are the common feedstocks for bioethanol in Europe. The term “second-generation bioethanol” emerged as a boon to overcome the “food versus fuel” that occurs by the first-generation bioethanol. The second generation also referred to as “advanced biofuels” is produced by innovative processes mainly using lignocellulosic feedstock and agricultural forest residues. The emergence of the third-generation bioethanol provides more benefits as compared to the first and second generations and is focused on the use of microalgae and cyanobacteria. These organisms represent as a promising alternative feedstock due to its high lipid and carbohydrate contents, easy cultivation in a wide variety of water environment, relatively low land usage and carbon dioxide absorption. This chapter will discuss the use of microalgae for the ethanol production and the main technological routes, i.e., enzymatic hydrolysis and yeast fermentation of microalgal biomass, metabolic pathways in dark conditions, and “photofermentation.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behrens, P. W., Bingham, S. E., Hoeksema, S. D., Cohoon, D. L., & Cox, J. C. (1989). Studies on the incorporation of CO2 into starch by Chlorella vulgaris. Journal of Applied Phycology, 1, 123–130.

    Article  Google Scholar 

  • Brennan, l, & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  Google Scholar 

  • Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., et al. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.

    Article  Google Scholar 

  • Costa, R. L., Oliveira, T. V., Ferreira, J. S., Cardoso, V. L., & Batista, F. R. (2015). Prospective technology on bioethanol production from photofermentation. Bioresource Technology, 181, 330–337.

    Article  Google Scholar 

  • de Farias Silva, C. E., & Bertucco, A. (2016). Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochemistry, 51(11), 1833–1842.

    Article  Google Scholar 

  • Doucha, J., & Lívanský, K. (2009). Outdoor open thin-layer microalgal photobioreactor: potential productivity. Journal of Applied Phycology, 21, 111–117.

    Article  Google Scholar 

  • Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A., & Teixeira, J. A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 88(10), 3331–3335.

    Article  Google Scholar 

  • Gupta, A., & Verma, J. P. (2015). Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550–567.

    Article  Google Scholar 

  • Hirano, A., Ueda, R., Hirayama, S., & Ogushi, Y. (1997). CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22, 137–142.

    Article  Google Scholar 

  • Ho, S. H., Huang, S. W., Chen, C. Y., Hasunuma, T., Kondo, A., & Chang, J. S. (2013). Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135, 191–198.

    Article  Google Scholar 

  • Kim, H. M., Oh, C. H., & Bae, H. J. (2017). Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Bioresource Technology, 233, 44–50.

    Article  Google Scholar 

  • Markou, G., Angelidaki, I., Nerantzis, E., & Georgakakis, D. (2013). Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies, 6(8), 3937–3950.

    Article  Google Scholar 

  • Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  Google Scholar 

  • Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P., Carneiro, L. M., Roberto, I. C., et al. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–830.

    Article  Google Scholar 

  • Philipps, G., Krawietz, D., Hemschemeier, A., & Happe, T. (2011). A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. Plant Journal, 66(2), 330–340.

    Article  Google Scholar 

  • Piven, I., Friedrich A., Dühring, U., Uliczka, F., Baier, K., Inaba, M., et al. (2015). Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures. U.S.Patent 8846369 B2.

    Google Scholar 

  • Rai, P. K., & Singh, S. P. (2016). Integrated dark- and photo-fermentation: Recent advances and provisions for improvement. International Journal of Hydrogen Energy, 41(44), 19957–19971.

    Article  Google Scholar 

  • Rizza, L. S., Smachetti, M. E. S., Nascimento, M., Salerno, G. L., & Curatti, L. (2017). Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Research, 22, 140–147.

    Article  Google Scholar 

  • Shokrkar, H., Ebrahimi, S., & Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200, 380–386.

    Article  Google Scholar 

  • Stewart, C., & Hessami, M. A. (2005). A study of methods of carbon dioxide capture and sequestration—The sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management, 46(3), 403–420.

    Article  Google Scholar 

  • U.S. Energy Information Administration (EIA). (2017). Annual energy outlook. https://www.eia.gov/outlooks/aeo/.

  • Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.

    Article  Google Scholar 

  • Yuan, T., Li, X., Xiao, S., Guo, Y., Zhou, W., Xu, J., et al. (2016). Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency. Bioresource Technology, 220, 530–536.

    Article  Google Scholar 

  • Zepka, L. Q., Jacob-Lopes, E., Goldbeck, R., & Queiroz, M. I. (2008). Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions. Chemical Engineering and Processing, 47, 1305–1310.

    Article  Google Scholar 

  • Zhou, N., Zhang, Y., Wu, X., Gong, X., & Wang, Q. (2011). Hydrolysis of chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102(21), 10158–10161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinaldo Gaspar Bastos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastos, R.G. (2018). Biofuels from Microalgae: Bioethanol. In: Jacob-Lopes, E., Queiroz Zepka, L., Queiroz, M. (eds) Energy from Microalgae . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69093-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69093-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69092-6

  • Online ISBN: 978-3-319-69093-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics