Skip to main content

Hierarchical Clustering-Based Algorithms and In Silico Techniques for Phylogenetic Analysis of Rhizobia

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

  • 1295 Accesses

Abstract

There are several in silico methodologies and tools available to study evolutionary history of rhizobia. Previously, it was very difficult to study and predict evolutionary relationships between two microbial species in a laboratory using wet lab experiments due to the lack of fossil evidences of microorganisms. In previous two decades, emergence and development of bioinformatics tools resolved this problem by replacing wet experiments by in silico experiments. The present communication is a survey on phylogenetic tools and algorithms used by researchers to study phylogeny of rhizobia. Phylogenetic analysis may be considered to be a highly reliable and important bioinformatics tool in biological sciences. The importance of phylogenetic analysis lies in its simple and easy handling of data. The varied applications of phylogenetics in different fields of biology make this analysis an unconditional necessity. This chapter is a survey on the molecular phylogenetic analysis of rhizobia with reference to the contemporary in silico methods used for rhizobia. Evidences and input parameters have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz RA, Al-Barakah FN, Al-Asmary HM (2008) Genetic identification and symbiotic efficiency of Sinorhizobium meliloti indigenous to Saudi Arabian soils. Afr J Biotechnol 7:2803–2809

    CAS  Google Scholar 

  • Aliliche et al (2016) Molecular phylogenetic analysis of Rhizobium sullae isolated from Algerian Hedysarum flexuosum. Antonie van Leeuwenhoek 109:897–906

    Article  PubMed  Google Scholar 

  • Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Tejerizo GT, Rogel MA, Mora J, Martínez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 14:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo ASF, Lopes ACA, Gomes RLF, Beserra Junior REA, Antunes JEL, Lyra MCCP, Figueiredo MVB (2015) Diversity of native rhizobia-nodulating Phaseolus lunatus in Brazil. Legume Res 38(5):653–657

    Google Scholar 

  • Ba S, Willems A, Lajudie PD, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé JC, Gillis M, Boivin-Masson C, Lorquin J (2002) Symbiotic and taxonomic diversity of Rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145

    Article  CAS  PubMed  Google Scholar 

  • Baginsky et al (2015) Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Arch Microbiol 197:419–429

    Article  CAS  PubMed  Google Scholar 

  • Baraúna AC, Silva K, Pereira GMD, Kaminski PE, Perin L, Zilli JE (2014) Diversity and nitrogen fixation efficiency of rhizobia isolated from nodules of Centrolobium paraense. Pesq Agropec Bras 49:296–305

    Article  Google Scholar 

  • Berkum PV, Beyene D, Eardly BD (1996) Phylogenetic Relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Internationjaolu rnaolf systematibca cteriologjyan 46:240–244

    Google Scholar 

  • Blažinkov M, Sikora S, Uher D, MaćeÅ¡ić D, Redžepović S (2007) Genotypic characterisation of indigenous Rhizobium leguminosarum bv. viciae field population in Croatia. Agric Conspec Sci 72:153–158

    Google Scholar 

  • Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray-based detection and typing of the Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71:8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechenmacher et al (2008) Transcription profiling of Soybean nodulation by Bradyrhizobium japonicum. Mol Plant Microbe Interact 21:631–645

    Article  CAS  PubMed  Google Scholar 

  • Capoen W, Den Herder J, Rombauts S, Gussem JD, Keyser AD, Holsters M, Goormachtig S (2007) Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. Plant Physiol 144:1878–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaphalkar A, Salunkhe N (2010) Phylogenetic analysis of nitrogen-fixing and quorum sensing bacteria. Int J Bioinf Res 2:17–32

    Article  CAS  Google Scholar 

  • Choi YJ, Yun HK (2016) Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated ‘Tamnara’ grapevines based on microarray analysis. J Plant Biotechnol 43:37–48

    Article  Google Scholar 

  • Chriki-Adeeb R, Chriki A (2015) Bayesian phylogenetic analysis of rhizobia isolated from root-nodules of three Tunisian wild legume species of the genus Sulla. J Phylogen Evol Biol 3:149

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. Atlas Protein Seq Struct 5:345–352

    Google Scholar 

  • Dourado AC, Alves PIL, Tenreiro T, Ferreira EM, Tenreiro R, Fareleira P, Crespo MTB (2009) Identification of Sinorhizobium (Ensifer) medicae based on a specific genomic sequence unveiled by M13-PCR fingerprinting. Int Microbiol 12:215–225

    CAS  PubMed  Google Scholar 

  • Eardly BD, Nour SM, Berkum PV, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faisal T, Farooq J, Vessey K (2009) Genetic diversity of Bradyrhizobium japonicum within soybean growing regions of the north-eastern Great Plains of North America as determined by REP-PCR and ERIC-PCR profiling. Symbiosis 48:131–142

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Article  CAS  PubMed  Google Scholar 

  • Frédéric Ampe et al (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4:R15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174

    Article  CAS  PubMed  Google Scholar 

  • Hassen et al (2014) Nodulation study and characterization of Rhizobial microsymbionts of forage and pasture legumes in South Africa. World J Agri Res 2(3):93–100

    Article  Google Scholar 

  • Jia et al (2015) Identification and classification of Rhizobia by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Proteomics Bioinf 8(6):98–107

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academic Press, New York, pp 21–132

    Google Scholar 

  • Jurelevicius et al (2010) Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum-contaminated soil. J Microbiol Biotechnol 20(5):862–870

    Article  CAS  PubMed  Google Scholar 

  • Kesari et al (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Hindawi Publishing Corporation. BioMed Res Int 2013:65198

    Google Scholar 

  • Khbaya et al (1998) Genetic diversity and phylogeny of Rhizobia that nodulate Acacia spp. in morocco assessed by analysis of rRNA genes. Appl Environ Microbiol 64:4912–4917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Knief et al (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch M et al (2010) Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. MPMI 23:784–790

    Article  CAS  PubMed  Google Scholar 

  • Korner H et al (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 792:1–34

    Google Scholar 

  • Kumar et al (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5(1):140133

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu et al (2012) Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla). N Z Plant Prot 65:192–196

    CAS  Google Scholar 

  • Lyra et al (2013) Phenotypic and molecular characteristics of rhizobia isolated from nodules of peanut (Arachis hypogaea L.) grown in Brazilian Spodosols. Afr J Biotechnol 12:2147–2156

    Article  Google Scholar 

  • Mathur M, Tuli R (1990) Cluster analysis of genes for nitrogen fixation from diazatrophs. J Genet 69:67–78

    Article  CAS  Google Scholar 

  • McGinn et al (2016) Trifolium species associate with a similar richness of soil-borne mutualists in their introduced and native ranges. J Biogeogr. doi:10.1111/jbi.12690

  • Mora et al (2014) Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Appl Environ Microbiol 80:5644–5654

    Article  PubMed  PubMed Central  Google Scholar 

  • Murtagh F (1984) Complexities of hierarchical clustering algorithms: the state of the art. Comput Stat Q 1:101–113

    Google Scholar 

  • Pinto et al (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864

    Article  CAS  Google Scholar 

  • Rashid et al (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Reeve et al (2013) Genome sequence of the clover-nodulating Rhizobium leguminosarum bv. trifolii strain TA1. Stand Genomic Sci 9:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogel et al (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SS, Dasgupta R, Bagchi A (2014) A review on phylogenetic analysis: a journey through modern era. Comput Mol Biosci 4:39–45

    Article  Google Scholar 

  • Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santamaría et al (2014) Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 80:446–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuller et al (2012) Computer-based annotation of putative AraC/XylS-family transcription factors of known structure but unknown function. J Biomed Biotechnol 2012:103132

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch et al (1997) Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Australian soil. Mol Ecol 6:601–608

    Article  CAS  Google Scholar 

  • Sober E (1983) Parsimony in systematics: philosophical issues. Annu Rev Ecol Syst 14:335–357

    Article  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tan Z-Y et al (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related Rhizobia. Int J Syst Bacteriol 47:874–879

    Article  CAS  PubMed  Google Scholar 

  • Taulé et al (2012) New betaproteobacterial Rhizobium strains able to efficiently nodulate Parapiptadenia rigida (Benth.) Brenan. Appl Environ Microbiol 78(6):1692–1700

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci Am Math Soc 17:57–86

    Google Scholar 

  • Tian CF, Zhou YJ, Zhang YM et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 109:8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velázquez et al (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. MPMI 18:1325–1332

    Article  PubMed  Google Scholar 

  • Vercruysse et al (2011) Stress response regulators identified through genome-wide transcriptome analysis of the (p) ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willems, Collins (1993) Phylogenetic analysis of Rhizobia and Agrobacteria based on 16s rRNA gene sequences. Internatiojnoaulr naolf systematbiacc teriologya 43:305–313

    CAS  Google Scholar 

  • Yang G-P et al (1999) Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with a,b-unsaturated N-acyl substitutions. Mol Microbiol 34:227–237

    Article  CAS  PubMed  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 8:133

    Google Scholar 

  • Youseif et al (2014) Phenotypic characteristics and genetic diversity of rhizobia nodulating soybean in Egyptian soils. Eur J Soil Biol 60:34–43

    Article  CAS  Google Scholar 

  • Zhang J et al (2007) Monophyletic clustering and characterization of protein families. J Integr Bioinf 4:67

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmesh Harwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lakhani, J., Khuteta, A., Choudhary, A., Harwani, D. (2017). Hierarchical Clustering-Based Algorithms and In Silico Techniques for Phylogenetic Analysis of Rhizobia. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_10

Download citation

Publish with us

Policies and ethics