Skip to main content

A Flexible Component-Based Robot Control Architecture for Hormonal Modulation of Behaviour and Affect

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

Abstract

In this paper we present the foundations of an architecture that will support the wider context of our work, which is to explore the link between affect, perception and behaviour from an embodied perspective and assess their relevance to Human Robot Interaction (HRI). Our approach builds upon existing affect-based architectures by combining artificial hormones with discrete abstract components that are designed with the explicit consideration of influencing, and being receptive to, the wider affective state of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CaƱamero, L.: Building emotional artifacts in social worlds: challenges and perspectives. In: Proceedings of 2001 AAAI Fall Symposium in Emotional and Intelligent II: The Tangled Knot of Social Cognition, pp. 22ā€“30 (2001)

    Google ScholarĀ 

  2. CaƱamero, L.: Emotion understanding from the perspective of autonomous robots research. Neural Netw. 18(4), 445ā€“455 (2005)

    ArticleĀ  Google ScholarĀ 

  3. Herrera Perez, C., Sanchez Escribano, G., Sanz, R.: The morphofunctional approach to emotion modelling in robotics. Adapt. Behav. 20(5), 388ā€“404 (2012)

    ArticleĀ  Google ScholarĀ 

  4. Pfeifer, R.: Building ā€œFungus Eatersā€: design principles of autonomous agents. In: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior SAB 1996 (From Animals to Animats), pp. 3ā€“12 (1996)

    Google ScholarĀ 

  5. Wilson, S.: The Animat path to AI. In: From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour, vol. 1, pp. 15ā€“21. MIT Press, Cambridge (1991)

    Google ScholarĀ 

  6. Damasio, A.R.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness (1999)

    Google ScholarĀ 

  7. Harnad, S.: The symbol grounding problem. Physica D 42, 335ā€“346 (1990)

    ArticleĀ  Google ScholarĀ 

  8. Kravitz, E.A.: Hormonal control of behavior: amines as gain-setting elements that bias behavioral output in lobsters. Integr. Comp. Biol. 30(3), 595ā€“608 (1990)

    Google ScholarĀ 

  9. Brooks, R.A.: Integrated systems based on behaviors. ACM SIGART Bull. 2(4), 46ā€“50 (1991)

    ArticleĀ  Google ScholarĀ 

  10. Krichmar, J.L.: A neurorobotic platform to test the influence of neuromodulatory signaling on anxious and curious behavior. Front. Neurorobot. 7, 1ā€“17 (2013)

    Google ScholarĀ 

  11. Lowe, R., Kiryazov, K.: Utilizing emotions in autonomous robots: an enactive approach. In: Bosse, T., Broekens, J., Dias, J., Zwaan, J. (eds.) Emotion Modeling. LNCS, vol. 8750, pp. 76ā€“98. Springer, Cham (2014). doi:10.1007/978-3-319-12973-0_5

    Google ScholarĀ 

  12. CaƱamero, L., Avila-GarcĆ­a, O.: A bottom-up investigation of emotional modulation in competitive scenarios. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 398ā€“409. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74889-2_35

    ChapterĀ  Google ScholarĀ 

  13. Lones, J., Lewis, M., CaƱamero, L.: From sensorimotor experiences to cognitive development: investigating the influence of experiential diversity on the development of an epigenetic robot. Front. Robot. AI 3 (2016)

    Google ScholarĀ 

  14. Lhommet, M., Marsella, S.: Expressing emotion through posture and gesture. In: The Oxford Handbook of Affective Computing (Gratiolet 1865), pp. 273ā€“285 (2015)

    Google ScholarĀ 

  15. Beck, A., Canamero, L., Bard, K.A.: Towards an affect space for robots to display emotional body language. In: 19th IEEE International Symposium on Robot and Human Interactive Communication Principe, pp. 464ā€“469 (2010)

    Google ScholarĀ 

  16. Gadanho, S.C., Hallam, J.: Robot learning driven by emotions. Adapt. Behav. 9(1), 42ā€“64 (2001)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  17. Levitan, I.B., Kaczmaret, L.K.: The Neuron: Cell and Molecular Biology, 3rd edn. Oxford University Press, Oxford (2002)

    Google ScholarĀ 

  18. Oā€™Regan, J.K., Noe, A.: What it is like to see: a sensorimotor theory of perceptual experience. Synthese 129(1), 79ā€“103 (2001)

    ArticleĀ  Google ScholarĀ 

  19. Derdikman, D., Moser, E.I.: A manifold of spatial maps in the brain. Space Time Number Brain 14(12), 41ā€“57 (2011)

    ArticleĀ  Google ScholarĀ 

  20. Durier, V., Rivault, C.: Path integration in cockroach larvae, Blattella germanica (L.)(insect: Dictyoptera): direction and distance estimation. Learn. Behav. 27(1), 108ā€“118 (1999)

    ArticleĀ  Google ScholarĀ 

  21. Dyer, F.C., Dickinson, J.A.: Sun-compass learning in insects: representation in a simple mind. Curr. Dir. Psychol. Sci. 5(3), 67ā€“72 (1996)

    ArticleĀ  Google ScholarĀ 

  22. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386ā€“408 (1958)

    ArticleĀ  Google ScholarĀ 

  23. CaƱamero, L.: Modelling motivation and emotions as a basis for intelligent behavior. In: First International Conference on Autonomous Agents (AGENTS 1997), pp. 148ā€“155. ACM, New York (1997)

    Google ScholarĀ 

  24. Lewis, M., Canamero, L.: Hedonic quality or reward? A study of basic pleasure in homeostasis and decision making of a motivated autonomous robot. Adapt. Behav. 24(5), 267ā€“291 (2016)

    ArticleĀ  Google ScholarĀ 

  25. Fellous, J.: The neuromodulatory basis of emotion. Neuroscientist 5(3), 283ā€“294 (1999)

    ArticleĀ  Google ScholarĀ 

  26. French, R.L.B., CaƱamero, L.: Introducing neuromodulation to a braitenberg vehicle. In: 2005 Proceedings of IEEE International Conference on Robotics and Automation, pp. 4188ā€“4193, April 2005

    Google ScholarĀ 

  27. Husbands, P.: Evolving robot behaviours with diffusing gas networks. In: Husbands, P., Meyer, J.-A. (eds.) EvoRobots 1998. LNCS, vol. 1468, pp. 71ā€“86. Springer, Heidelberg (1998). doi:10.1007/3-540-64957-3_65

    ChapterĀ  Google ScholarĀ 

Download references

Acknowledgements

Luke Hickton is supported by a PhD studentship of the University of Hertfordshire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Hickton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hickton, L., Lewis, M., CaƱamero, L. (2017). A Flexible Component-Based Robot Control Architecture for Hormonal Modulation of Behaviour and Affect. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics