Skip to main content

Image-Guided Therapy

  • Chapter
  • First Online:
Advances in Personalized Nanotherapeutics

Abstract

Image-guided therapy using nanoparticles have been used for various therapeutic applications such as drug and gene delivery, hyperthermia, and photodynamic therapy. These image-guided approaches help to achieve more efficient treatments by visualizing biodistribution of therapeutic agents and quantifying them at targeted tissues. This allows not only monitoring of their accumulation at targeted sites, but also highly localized treatments by controlled activation of therapeutic agents at the desired tissues, when needed. Here, we summarize the imaging modalities used for image-guided therapies and discuss recent advances on nanoparticle-based image-guided therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899–912.

    Article  CAS  PubMed  Google Scholar 

  2. Cormode DP, Skajaa T, Fayad ZA, Mulder WJM. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol. 2009;29(7):992–1000.

    Article  CAS  PubMed  Google Scholar 

  3. Barenholz (Chezy) Y. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    Article  Google Scholar 

  4. Bin Na H, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48.

    Article  Google Scholar 

  5. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Z, Lu Z-R. Gadolinium-based contrast agents for MR cancer imaging. Wiley Interdiscp Rev Nanomed Nanobiotechnol. 2013;5(1):1–18.

    Article  CAS  Google Scholar 

  7. Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci. 2013;14(5):10591–607.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR Biomed. 2013;26(7):728–44.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–76.

    Article  CAS  PubMed  Google Scholar 

  10. Kim KS, Park W, Hu J, Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials. 2014;35(1):337–43.

    Article  CAS  PubMed  Google Scholar 

  11. Korkusuz H, Ulbrich K, Welzel K, Koeberle V, Watcharin W, Bahr U, Chernikov V, Knobloch T, Petersen S, Huebner F, Ackermann H, Gelperina S, Kromen W, Hammerstingl R, Haupenthal J, Gruenwald F, Fiehler J, Zeuzem S, Kreuter J, Vogl TJ, Piiper A. Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol Imaging Biol. 2013;15(2):148–54.

    Article  PubMed  Google Scholar 

  12. Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.

    PubMed  PubMed Central  Google Scholar 

  13. Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir. 2013;29(2):710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin T, Choi J, Yun S, Kim I, Song H, Kim Y. T 1 and T 2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano. 2014;8(4):3393–401.

    Article  CAS  PubMed  Google Scholar 

  16. Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S. T1–T2 dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J Nanopart Res. 2014;16(11):1–11.

    Article  CAS  Google Scholar 

  17. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012;45(10):1817–27.

    Article  CAS  PubMed  Google Scholar 

  19. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  20. Badea CT, Athreya KK, Espinosa G, Clark D, Ghafoori AP, Li Y, Kirsch DG, Johnson GA, Annapragada A, Ghaghada KB. Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent. PLoS One. 2012;7(4):1–7.

    Article  Google Scholar 

  21. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H. Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials. 2010;31(25):6537–44.

    Article  PubMed  Google Scholar 

  22. Ai K, Liu Y, Liu J, Yuan Q, He Y, Lu L. Large-scale synthesis of bi 2S 3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv Mater. 2011;23(42):4886–91.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chemie Int Ed Engl. 2012;51(6):1437–42.

    Article  CAS  Google Scholar 

  24. Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.

    Article  CAS  PubMed  Google Scholar 

  25. Sun IC, Na JH, Jeong SY, Kim DE, Kwon IC, Choi K, Ahn CH, Kim K. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res. 2014;31(6):1418–25.

    Article  CAS  PubMed  Google Scholar 

  26. Townsend DW. Physical principles and technology of clinical PET imaging. Ann Acad Med Singap. 2004;33(2):133–45.

    CAS  PubMed  Google Scholar 

  27. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thorek DLJ, Ulmert D, Diop N-FM, Lupu ME, Doran MG, Huang R, Abou DS, Larson SM, Grimm J. Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle. Nat Commun. 2014;5:3097.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chakravarty R, Valdovinos HF, Chen F, Lewis CM, Ellison PA, Luo H, Meyerand ME, Nickles RJ, Cai W. Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR zimaging. Adv Mater. 2014;26(30):5119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan V, Perlas A. Basics of ultrasound imaging. In: Narouze SN, editor. Atlas of ultrasound-guided procedures in interventional pain management. Berlin: Springer; 2011. p. 13–20.

    Chapter  Google Scholar 

  31. Khokhlova TD, Haider Y, Hwang JH. Therapeutic potential of ultrasound microbubbles in gastrointestinal oncology: recent advances and future prospects. Therap Adv Gastroenterol. 2015;8(6):384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu D, Huang L, Jiang MS, Jiang H. Contrast agents for photoacoustic and thermoacoustic imaging: a review. Int J Mol Sci. 2014;15(12):23616–39.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic. Nanoscale. 2015;7:16890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. 2006;77(4):041101.

    Article  Google Scholar 

  35. Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. Prog Eletromagnic Res. 2014;147(May):1–22.

    Google Scholar 

  36. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature. 2008;452:580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399:3–27.

    Article  CAS  PubMed  Google Scholar 

  38. Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J. Magnetic particle imaging: current developments and future directions. Int J Nanomedicine. 2015;10:3097–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater. 2012;24(28):3870–7.

    Article  CAS  PubMed  Google Scholar 

  40. Knopp T, Buzug TM. Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Berlin: Springer; 2012.

    Book  Google Scholar 

  41. Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, Guo L, Pan Y, Gu H. Synthesis of au-Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale. 2014;6(1):199–202.

    Article  CAS  PubMed  Google Scholar 

  42. Liang SY, Zhou Q, Wang M, Zhu YH, Wu QZ, Yang XL. Water-soluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int J Nanomedicine. 2015;10:2325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, Krishnan KM. Vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials. 2015;52:251–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu T, Shi S, Liang C, Shen S, Cheng L, Wang C, Song X, Goel S. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS nano. 2015;9:950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen QT, Tsien RY. Fluorescence-guided surgery with live molecular navigation-a new cutting edge. Nat Rev Cancer. 2013;13(9):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zheng J, Muhanna N, De Souza R, Wada H, Chan H, Akens MK, Anayama T, Yasufuku K, Serra S, Irish J, Allen C, Jaffray D. A multimodal nano agent for image-guided cancer surgery. Biomaterials. 2015;67:160–8.

    Article  CAS  PubMed  Google Scholar 

  47. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  48. Xi L, Zhou G, Gao N, Yang L, a Gonzalo D, Hughes SJ, Jiang H. Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe. Ann Surg Oncol. 2014;21:1602–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scoggins CR, Chagpar AB, Martin RCG, McMasters KM. Should sentinel lymph-node biopsy be used routinely for staging melanoma and breast cancers? Nat Clin Pract Oncol. 2005;2(9):448–55.

    Article  PubMed  Google Scholar 

  50. Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, Sofocleous CT, Meester RJC, Wiesner U, Patel S. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74–86.

    Article  CAS  Google Scholar 

  51. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article  CAS  PubMed  Google Scholar 

  52. de Smet M, Langereis S, van den Bosch S, Grüll H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release. 2010;143(1):120–7.

    Article  PubMed  Google Scholar 

  53. Chen F, Hong H, Zhang Y, Valdovinos HF, Shi S, Kwon GS, Al CET. In Vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–39.

    Article  CAS  PubMed  Google Scholar 

  54. Chen K-J, Chaung E-Y, Wey S-P, Lin K-J, Cheng F, Lin C-C, Liu H-L, Tseng H-W, Liu C-P, Wei M-C, Liu C-M, Sung H-W. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor specific chemotherapy. ACS Nano. 2014;8(5):5105–15.

    Article  CAS  PubMed  Google Scholar 

  55. Pacheco-Torres J, Mukherjee N, Walko M, López-Larrubia P, Ballesteros P, Cerdan S, Kocer A. Image guided drug release from pH-sensitive ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomedicine. 2015;11(6):1345–54.

    Article  CAS  PubMed  Google Scholar 

  56. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, Shih TY, Swaminathan G, Tamargo RJ, Woodworth GF, Hanes J, Price RJ. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood–brain barrier using MRI-guided focused ultrasound. J Control Release. 2014;189:123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm. 2015;12(2):314–21.

    Article  CAS  PubMed  Google Scholar 

  58. Kozielski KL, Tzeng SY, Hurtado De Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. 2014;8(4):3232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang Y, Liu Z, Shuai X, Wang W, Liu J, Bi W, Wang C, Jing X, Liu Y, Tao E. Delivery of cationic polymer-siRNA nanoparticles for gene therapies in neural regeneration. Biochem Biophys Res Commun. 2012;421(4):690–5.

    Article  CAS  PubMed  Google Scholar 

  60. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y, Park IK, Kim WJ. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31(14):4204–13.

    Article  CAS  PubMed  Google Scholar 

  61. Kami D, Kitani T, Kishida T, Mazda O, Toyoda M, Tomitaka A, Ota S, Ishii R, Takemura Y, Watanabe M, Umezawa A, Gojo S. Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine. 2014;10(6):1165–74.

    Article  CAS  PubMed  Google Scholar 

  62. He L, Feng L, Cheng L, Liu Y, Li Z, Peng R, Li Y, Guo L, Liu Z. Multilayer dual-polymer-coated upconversion nanoparticles for multimodal imaging and serum-enhanced gene delivery. ACS Appl Mater Interfaces. 2013;5(20):10381–8.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Q, Li J, An S, Chen Y, Jiang C, Wang X. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomedicine. 2015;10:4479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hildebrandt B. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43(1):33–56.

    Article  PubMed  Google Scholar 

  65. Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.

    Article  CAS  Google Scholar 

  66. Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol. 2007;19(6):418–26.

    Article  CAS  Google Scholar 

  67. Tomitaka A, Takemura Y. Measurement of specific loss power from intracellular magnetic nanoparticles for hyperthermia. J Pers Nanomedicine. 2015;1(1):33–7.

    Google Scholar 

  68. Huang X, El-Sayed M a. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28.

    Article  Google Scholar 

  69. Zhang X-D, Wu D, Shen X, Chen J, Sun Y-M, Liu P-X, Liang X-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012;33:6408–19.

    Article  CAS  PubMed  Google Scholar 

  70. Baldi G, Ravagli C, Mazzantini F, Loudos G, Adan J, Masa M, Psimadas D, Locatelli E, Innocenti C, Sangregorio C. In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor containing magnetic nanoparticles. Int J Nanomedicine. 2014;9(1):3037–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, Choi J, Whitley MJ, Zhao X, Qi Y, Ma Y, Vaidyanathan G, Zalutsky MR, Kirsch DG, Badea CT, Vo-Dinh T. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5(9):946–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, Liu X, Zheng H. Molecular imaging-guided photothermal / photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release. 2016;224:217–28.

    Article  CAS  PubMed  Google Scholar 

  73. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bozzini G, Colin P, Betrouni N, Nevoux P, Ouzzane A, Puech P, Villers A, Mordon S. Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagn Photodyn Ther. 2012;9(3):261–73.

    Article  CAS  Google Scholar 

  75. Kim H, Mun S, Choi Y. Photosensitizer-conjugated polymeric nanoparticles for redox-responsive fluorescence imaging and photodynamic therapy. J Mater Chem B. 2013;1:429–31.

    Article  CAS  Google Scholar 

  76. Taratula O, Doddapaneni BS, Schumann C, Li X, Bracha S, Milovancev M, Alani AWG, Taratula O. Naphthalocyanine-based biodegradable polymeric nanoparticles for image-guided combinatorial phototherapy. Chem Mater. 2015;27(17):6155–65.

    Article  CAS  Google Scholar 

  77. Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y, Zhang Y, Wu A, Lu J, Zhang S, Huang P, Shen B, Chen X. Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials. 2015;42:94–102.

    Article  CAS  PubMed  Google Scholar 

  78. Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J. Biomaterials an imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials. 2015;63:115–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asahi Tomitaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomitaka, A., Arami, H., Takemura, Y., Nair, M. (2017). Image-Guided Therapy. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_4

Download citation

Publish with us

Policies and ethics