Skip to main content

Establishment of the Vertebrate Germ Layers

  • Chapter
  • First Online:
Vertebrate Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 953))

Abstract

The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A (2013) von Baer’s law for the ages: lost and found principles of developmental evolution. Trends Genet 29:712–722

    Article  CAS  PubMed  Google Scholar 

  • Adams RJ, Kimmel C (2004) Morphogenetic cellular flows during zebrafish gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    Google Scholar 

  • Albano RM, Arkell R, Beddington RS, Smith JC (1994) Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development 120:803–813

    CAS  PubMed  Google Scholar 

  • Albano RM, Godsave SF, Huylebroeck D, Van Nimmen K, Isaacs HV, Slack JM, Smith JC (1990) A mesoderm-inducing factor produced by WEHI-3 murine myelomonocytic leukemia cells is activin A. Development 110:435–443

    CAS  PubMed  Google Scholar 

  • Albano RM, Groome N, Smith JC (1993) Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development 117:711–723

    CAS  PubMed  Google Scholar 

  • Alev C, Wu Y, Nakaya Y, Sheng G (2013) Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction. Development 140:2691–2696

    Article  CAS  PubMed  Google Scholar 

  • Amaya E, Musci TJ, Kirschner MW (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270

    Google Scholar 

  • Andersson O, Bertolino P, Ibanez CF (2007) Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol 311:500–511

    Article  CAS  PubMed  Google Scholar 

  • Aoki TO, Mathieu J, Saint-Etienne L, Rebagliati MR, Peyrieras N, Rosa FM (2002) Regulation of nodal signalling and mesendoderm formation by TARAM-A, a TGFbeta-related type I receptor. Dev Biol 241:273–288

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Nubler-Jung K (1999) Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mech Dev 81:3–22

    Article  CAS  PubMed  Google Scholar 

  • Aristotle, Peck AL (1943) Generation of animals. W. Heinemann/Harvard University Press, London/Cambridge, MA

    Google Scholar 

  • Asashima M, Grunz H (1983) Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis. Differentiation 23:206–212

    Article  CAS  PubMed  Google Scholar 

  • Azar Y, Eyal-Giladi H (1979) Marginal zone cells—the primitive streak-inducing component of the primary hypoblast in the chick. J Embryol Exp Morphol 52:79–88

    CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    Article  CAS  PubMed  Google Scholar 

  • Bachvarova RF, Skromne I, Stern CD (1998) Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development 125:3521–3534

    CAS  PubMed  Google Scholar 

  • Baer KE, Stieda L (1828) Über Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Bei den Gebrüdern Bornträger, Königsberg

    Book  Google Scholar 

  • Ballard WB (1982) Morphogenetic movements and fate map of the cypriniform teleost, Catostomus commersoni (lacepede). J Exp Zool 219:301–321

    Article  Google Scholar 

  • Ballard WW (1966a) Origin of the hypoblast in Salmo: I. Does the blastodisc edge turn inward? J Exp Zool A 161:201–209

    Article  Google Scholar 

  • Ballard WW (1966b) Origin of the hypoblast in Salmo: II. Outward movement of deep central cells. J Exp Zool 161:211–219

    Article  Google Scholar 

  • Ballard WW (1973) A new fate map for Salmo gairdneri. J Exp Zool 184:49–74

    Google Scholar 

  • Ballard WW, Ginsburg AA (1980) Morphogenetic movements in acipenserid embryos. J Exp Zool 213:69–103

    Article  Google Scholar 

  • Bartsch P, Gemballa S, Piotrowski T (1997) The embryonic and larval development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behaviour and locomotory habits. Acta Zool (Stockholm) 78:309–328

    Google Scholar 

  • Beddington RS (1982) An autoradiographic analysis of tissue potency in different regions of the embryonic ectoderm during gastrulation in the mouse. J Embryol Exp Morphol 69:265–285

    CAS  PubMed  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    CAS  PubMed  Google Scholar 

  • Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737

    CAS  PubMed  Google Scholar 

  • Bensch R, Song S, Ronneberger O, Driever W (2013) Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly. Biol Open 2:845–854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertocchini F, Alev C, Nakaya Y, Sheng G (2013) A little winning streak: the reptilian-eye view of gastrulation in birds. Dev Growth Differ 55:52–59

    Article  PubMed  Google Scholar 

  • Bertocchini F, Skromne I, Wolpert L, Stern CD (2004) Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131:3381–3390

    Article  CAS  PubMed  Google Scholar 

  • Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3:735–744

    Article  CAS  PubMed  Google Scholar 

  • Betchaku T, Trinkaus JP (1978) Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly. J Exp Zool 206:381–426

    Article  CAS  PubMed  Google Scholar 

  • Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J (2006) Vg1 is an essential signaling molecule in Xenopus development. Development 133:15–20

    Article  CAS  PubMed  Google Scholar 

  • Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Bolker JA (1993a) Gastrulation and mesoderm morphogenesis in the white sturgeon. J Exp Zool 266:116–131

    Article  CAS  PubMed  Google Scholar 

  • Bolker JA (1993b) The mechanism of gastrulation in the white sturgeon. J Exp Zool 266:132–145

    Article  CAS  PubMed  Google Scholar 

  • Born J, Geithe HP, Tiedemann H, Kocher-Becker U (1972) Isolation of a vegetalizing inducing factor. Hoppe Seylers Z Physiol Chem 353:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • Braem F (1895) Was ist ein Keimblatt? Biol Centralbl 15:427–506

    Google Scholar 

  • Branford WW, Yost HJ (2002) Lefty-dependent inhibition of nodal- and wnt-responsive organizer gene expression is essential for normal gastrulation. Curr Biol 12:2136–2141

    Article  CAS  PubMed  Google Scholar 

  • Brauckmann S (2012) Karl Ernst von Baer (1792–1876) and evolution. Int J Dev Biol 56:653–660

    Article  PubMed  Google Scholar 

  • Brawand D, Wahli W, Kaessmann H (2008) Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6:e63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969

    Article  CAS  PubMed  Google Scholar 

  • Bruce AE, Howley C, Dixon Fox M, Ho RK (2005) T-box gene eomesodermin and the homeobox-containing Mix/Bix gene mtx2 regulate epiboly movements in the zebrafish. Dev Dyn 233:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdsal CA, Flannery ML, Pedersen RA (1998) FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro. Dev Biol 198:231–244

    Google Scholar 

  • Callebaut M, Van Nueten E (1994) Rauber’s (Koller’s) sickle: the early gastrulation organizer of the avian blastoderm. Eur J Morphol 32:35–48

    CAS  PubMed  Google Scholar 

  • Callebaut M, Van Nueten E, Bortier H, Harrisson F (2003) Positional information by Rauber’s sickle and a new look at the mechanisms of primitive streak initiation in avian blastoderms. J Morphol 255:315–327

    Article  PubMed  Google Scholar 

  • Callebaut M, van Nueten E, Bortier H, Harrisson F, van Nassauw L (1996) Map of the Anlage fields in the avian unincubated blastoderm. Eur J Morphol 34:347–361

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, Meng A (2004) fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 271:130–143

    Article  CAS  PubMed  Google Scholar 

  • Cha YR, Takahashi S, Wright CV (2006) Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. Dev Biol 290:246–264

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan NM (1966) In vitro vital staining of chelonian blastoderms. Indian J Exp Biol 4:131–134

    Google Scholar 

  • Chang C, Wilson PA, Mathews LS, Hemmati-Brivanlou A (1997) A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development 124:827–837

    Google Scholar 

  • Chen C, Ware SM, Sato A, Houston-Hawkins DE, Habas R, Matzuk MM, Shen MM, Brown CW (2006) The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133:319–329

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kimelman D (2000) The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development 127:4681–4689

    CAS  PubMed  Google Scholar 

  • Chen Y, Schier AF (2001) The zebrafish Nodal signal Squint functions as a morphogen. Nature 411:607–610

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Schier AF (2002) Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr Biol 12:2124–2128

    Article  CAS  PubMed  Google Scholar 

  • Cheng AM, Thisse B, Thisse C, Wright CV (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127:1049–1061

    Google Scholar 

  • Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF (2003) EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev 17:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christen B, Slack JM (1997) FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol 192:455–466

    Google Scholar 

  • Chu J, Shen MM (2010) Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev Biol 342:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuai M, Zeng W, Yang X, Boychenko V, Glazier JA, Weijer CJ (2006) Cell movement during chick primitive streak formation. Dev Biol 296:137–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49

    Article  CAS  PubMed  Google Scholar 

  • Ciruna BG, Schwartz L, Harpal K, Yamaguchi TP, Rossant J (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124:2829–2841

    CAS  PubMed  Google Scholar 

  • Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126:4903–4911

    CAS  PubMed  Google Scholar 

  • Cobb M (2000) Reading and writing The Book of Nature: Jan Swammerdam (1637–1680). Endeavour 24:122

    Article  Google Scholar 

  • Comabella Y, Canabal J, Hurtado A, Garcia-Galano T (2014) Embryonic development of Cuban gar (Atractosteus tristoechus) under laboratory conditions. Anat Histol Embryol 43:495–502

    Google Scholar 

  • Concha ML, Adams RJ (1998) Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125:983–994

    CAS  PubMed  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    CAS  PubMed  Google Scholar 

  • Connolly DJ, Patel K, Cooke J (1997) Chick noggin is expressed in the organizer and neural plate during axial development, but offers no evidence of involvement in primary axis formation. Int J Dev Biol 41:389–396

    CAS  PubMed  Google Scholar 

  • Cooke J, Takada S, McMahon A (1994) Experimental control of axial pattern in the chick blastoderm by local expression of Wnt and activin: the role of HNK-1 positive cells. Dev Biol 164:513–527

    Article  CAS  PubMed  Google Scholar 

  • Cooke J, Webber JA (1985) Dynamics of the control of body pattern in the development of Xenopus laevis: II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage. J Embryol Exp Morphol 88:113–133

    Google Scholar 

  • Coolen M, Nicolle D, Plouhinec JL, Gombault A, Sauka-Spengler T, Menuet A, Pieau C, Mazan S (2008) Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One 3:e2676

    Google Scholar 

  • Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zoolog B Mol Dev Evol 308(5):591–608

    Article  Google Scholar 

  • Copp AJ, Roberts HM, Polani PE (1986) Chimaerism of primordial germ cells in the early postimplantation mouse embryo following microsurgical grafting of posterior primitive streak cells in vitro. J Embryol Exp Morphol 95:95–115

    CAS  PubMed  Google Scholar 

  • Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors. p53 is required for TGF-beta gene responses by cooperating with smads. Cell 113:301–314

    Article  CAS  PubMed  Google Scholar 

  • Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843

    Article  CAS  PubMed  Google Scholar 

  • Cornell RA, Kimelman D (1994) Activin-mediated mesoderm induction requires FGF. Development 120:453–462

    CAS  PubMed  Google Scholar 

  • Cornell RA, Musci TJ, Kimelman D (1995) FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction. Development 121:2429–2437

    CAS  PubMed  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  • Cruz YP, Yousef A, Selwood L (1996) Fate-map analysis of the epiblast of the dasyurid marsupial Sminthopsis macroura (Gould). Reprod Fertil Dev 8:779–788

    Google Scholar 

  • D'Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn 222:611–624

    Article  PubMed  Google Scholar 

  • Dale L, Slack JM (1987a) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–551

    Google Scholar 

  • Dale L, Slack JM (1987b) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100:279–295

    Google Scholar 

  • Dale L, Smith JC, Slack JM (1985) Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morphol 89:289–312

    Google Scholar 

  • Davidson EH (2010) The regulatory genome: gene regulatory networks in development and evolution. Academic, San Diego

    Google Scholar 

  • Delarue M, Johnson KE, Boucaut JC (1994) Superficial cells in the early gastrula of Rana pipiens contribute to mesodermal derivatives. Dev Biol 165:702–715

    Google Scholar 

  • Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8:3045–3057

    Article  CAS  PubMed  Google Scholar 

  • Devillers C (1961) Structural and dynamic aspects of the developemnt of the telesotean egg. Adv Morphol 1:379–428

    Article  Google Scholar 

  • Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395:702–707

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 157:474–483

    Google Scholar 

  • Dohrmann CE, Kessler DS, Melton DA (1996) Induction of axial mesoderm by zDVR-1, the zebrafish orthologue of Xenopus Vg1. Dev Biol 175:108–117

    Google Scholar 

  • Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815–818

    Article  CAS  PubMed  Google Scholar 

  • Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130:1837–1851

    Google Scholar 

  • Draper BW, Stock DW, Kimmel CB (2003) Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130:4639–4654

    Article  CAS  PubMed  Google Scholar 

  • Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl, 135–142

    Google Scholar 

  • Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568

    Article  CAS  PubMed  Google Scholar 

  • Erter CE, Solnica-Krezel L, Wright CV (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol 204:361–372

    Article  CAS  PubMed  Google Scholar 

  • Eyal-Giladi H (1984) The gradual establishment of cell commitments during the early stages of chick development. Cell Differ 14:245–255

    Article  CAS  PubMed  Google Scholar 

  • Eyal-Giladi H, Debby A, Harel N (1992) The posterior section of the chick’s area pellucida and its involvement in hypoblast and primitive streak formation. Development 116:819–830

    Google Scholar 

  • Fan X, Dougan ST (2007) The evolutionary origin of nodal-related genes in teleosts. Dev Genes Evol 217:807–813

    Article  PubMed  Google Scholar 

  • Fan X, Hagos EG, Xu B, Sias C, Kawakami K, Burdine RD, Dougan ST (2007) Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish. Dev Biol 310:363–378

    Article  CAS  PubMed  Google Scholar 

  • Feldman B, Concha ML, Saude L, Parsons MJ, Adams RJ, Wilson SW, Stemple DL (2002) Lefty antagonism of squint is essential for normal gastrulation. Curr Biol 12:2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Feldman B, Dougan ST, Schier AF, Talbot WS (2000) Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol 10:531–534

    Article  CAS  PubMed  Google Scholar 

  • Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185

    Article  CAS  PubMed  Google Scholar 

  • Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249

    Article  CAS  PubMed  Google Scholar 

  • Fink RD, Trinkaus JP (1988) Fundulus deep cells: directional migration in response to epithelial wounding. Dev Biol 129:179–190

    Google Scholar 

  • Fischer S, Draper BW, Neumann CJ (2003) The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 130:3515–3524

    Article  CAS  PubMed  Google Scholar 

  • Fisher ME, Isaacs HV, Pownall ME (2002) eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 129:1307–1315

    Google Scholar 

  • Fisher S, Amacher SL, Halpern ME (1997) Loss of cerebum function ventralizes the zebrafish embryo. Development 124:1301–1311

    CAS  PubMed  Google Scholar 

  • Fletcher RB, Baker JC, Harland RM (2006) FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133:1703–1714

    Google Scholar 

  • Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127:3839–3854

    CAS  PubMed  Google Scholar 

  • Freyer C, Zeller U, Renfree MB (2003) The marsupial placenta: a phylogenetic analysis. J Exp Zool A Comp Exp Biol 299:59–77

    Article  PubMed  Google Scholar 

  • Furthauer M, Thisse B, Thisse C (1999) Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev Biol 214:181–196

    Article  CAS  PubMed  Google Scholar 

  • Gardner RL (1983) Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol 24:63–133

    CAS  PubMed  Google Scholar 

  • Gardner RL, Cockroft DL (1998) Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125:2397–2402

    CAS  PubMed  Google Scholar 

  • Gardner RL, Rossant J (1979) Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152

    CAS  PubMed  Google Scholar 

  • Ge W, Gallin WJ, Strobeck C, Peter RE (1993) Cloning and sequencing of goldfish activin subunit genes: strong structural conservation during vertebrate evolution. Biochem Biophys Res Commun 193:711–717

    Article  CAS  PubMed  Google Scholar 

  • Gemmell RT, Veitch C, Nelson J (2002) Birth in marsupials. Comp Biochem Physiol B Biochem Mol Biol 131:621–630

    Article  PubMed  Google Scholar 

  • Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107(Suppl):37–51

    Google Scholar 

  • Gimlich RL, Gerhart JC (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104:117–130

    Article  CAS  PubMed  Google Scholar 

  • Godsave SF, Isaacs HV, Slack JM (1988) Mesoderm-inducing factors: a small class of molecules. Development 102:555–566

    CAS  PubMed  Google Scholar 

  • Goette A (1869) Untersuchungen über die Entwickelung des bombinator igneus. Arch Mikrosk Anat 5:90–125

    Article  Google Scholar 

  • Goette A (1873) Beiträge zur Entwicklungsgeschichte der Wirbeltiere: I. Der Keim des Forelleneies. Arch Mikrosk Anat 9:679–708

    Article  Google Scholar 

  • Gosner K (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gräper L (1929) Die Primitiventwicklung des Hühnchens nach stereokinematographischen Untersuchungen, kontrolliert durch vitale Farbmarkierung und verglichen mit Entwicklung anderer Wirbeltiere. Wilhelm Roux’ Arch Entwicklungsmech Org 116:382–429

    Article  Google Scholar 

  • Green JB, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71:731–739

    Google Scholar 

  • Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347:391–394

    Google Scholar 

  • Griffin K, Patient R, Holder N (1995) Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121:2983–2994

    CAS  PubMed  Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127:921–932

    CAS  PubMed  Google Scholar 

  • Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97:121–132

    Article  CAS  PubMed  Google Scholar 

  • Grunz H (1983) Change in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor. Roux’s Arch Dev Biol 192:130–137

    Google Scholar 

  • Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E (1998) The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12:844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E (1874) Memoirs: The Gastraea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. J Cell Sci S2–14:223–247

    Google Scholar 

  • Hagos EG, Dougan ST (2007) Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev Biol 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagos EG, Fan X, Dougan ST (2007) The role of maternal Activin-like signals in zebrafish embryos. Dev Biol 309:245–258

    Article  CAS  PubMed  Google Scholar 

  • Haller A, Arnay JR (1758) Sur la formation du coeur dans le poulet. Marc-Mich, Bousquet, Lausanne

    Book  Google Scholar 

  • Hamburger V (1984) Hilde Mangold, co-discoverer of the organizer. J Hist Biol 17:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle Z, Chalmers AD, Papalopulu N (2000) FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol 10:1511–1514

    Google Scholar 

  • Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230

    Google Scholar 

  • Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB (2011) FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC Dev Biol 11:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528

    Article  CAS  PubMed  Google Scholar 

  • Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7:e1000101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey W (1651) Exercitationes de generatione animalium. Quibus accedunt quaedam De partu: De membranis ac humoribus uteri: & De conceptione. Typis Du-Gardianis; impensis Octaviani Pulleyn, Londini

    Google Scholar 

  • Hatada Y, Stern CD (1994) A fate map of the epiblast of the early chick embryo. Development 120:2879–2889

    CAS  PubMed  Google Scholar 

  • Hatta K, Takahashi Y (1996) Secondary axis induction by heterospecific organizers in zebrafish. Dev Dyn 205:183–195

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg CP, Nusslein-Volhard C (1997) The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev Biol 184:85–94

    Article  CAS  PubMed  Google Scholar 

  • Helde KA, Grunwald DJ (1993) The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo. Dev Biol 159:418–426

    Article  CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359:609–614

    Google Scholar 

  • Hemmati-Brivanlou A, Wright DA, Melton DA (1992) Embryonic expression and functional analysis of a Xenopus activin receptor. Dev Dyn 194:1–11

    Google Scholar 

  • Hensen V (1876) Beobachtungen über de Befruchtung und Entwicklung des Kaninchens und Meerschweinchens. Z Anat EntwGesh 1:353

    Google Scholar 

  • Hill J, Johnston IA (1997) Photomicrographic atlas of Atlantic herring embryonic development. J Fish Biol 51:960–977

    Article  Google Scholar 

  • Hirose G, Jacobson M (1979) Clonal organization of the central nervous system of the frog: I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev Biol 71:191–202

    Article  CAS  PubMed  Google Scholar 

  • His W (1878) Untersuchungen über die Bildung des Knochenfischembryo (Salmen). Arch Anat Entwicklungsgeschichte 1878:180–221

    Google Scholar 

  • Ho RK, Kimmel CB (1993) Commitment of cell fate in the early zebrafish embryo. Science 261:109–111

    Article  CAS  PubMed  Google Scholar 

  • Holtfreter J (1929) Über die Aufzucht isolierter Teile des Amphibienkeimes: I. Methode eine Gewebezuchtung in vivo. Arch Entwmech 117:422–510

    Google Scholar 

  • Holtfreter J (1933) Die totale Exogastrulation, eine Selbstablösung des Ektoderms vom Entomesoderm. Entwicklung und funktionelles Verhalten nervenloser Organe. Arch Entwmech 129:670–793

    Google Scholar 

  • Holtfreter J (1938a) Differenzierungspotenzen isolierter Teile der Anurengastrula. Arch Entwmech 138:657–738

    Article  Google Scholar 

  • Holtfreter J (1938b) Differenzierungspotenzen isolierter Teile der Urodelengastrula. Arch Entwmech 138:522–656

    Article  Google Scholar 

  • Hong SK, Jang MK, Brown JL, McBride AA, Feldman B (2011) Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development 138:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert J (1970) Développement precoce de l'embryon et localization extra-embryonaire des gonocytes chez les reptiles. Arch Anat Microsc Morphol Exp 59:253–270

    CAS  PubMed  Google Scholar 

  • Hughes RL, Hall LS (1998) Early development and embryology of the platypus. Philos Trans R Soc Lond B Biol Sci 353:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt TE (1931) An experimental study of the independent differentiation of the isolated Hensen’s node and its relation to the formation of axial and non-axial parts in the chick embryo. J Exp Zool 59:395–427

    Article  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc Biol Sci 274:489–498

    Article  CAS  PubMed  Google Scholar 

  • Huylebroeck D, Van Nimmen K, Waheed A, von Figura K, Marmenout A, Fransen L, De Waele P, Jaspar JM, Franchimont P, Stunnenberg H et al (1990) Expression and processing of the activin-A/erythroid differentiation factor precursor: a member of the transforming growth factor-beta superfamily. Mol Endocrinol 4:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Hyodo M, Aoki A, Ando C, Katsumata M, Nyui S, Motegi N, Morozumi T, Matsuhashi M (1996) Essential role of the yolk syncytial layer for the development of isolated blastoderms from medaka embryos. Dev Growth Differ 38:383–392

    Article  Google Scholar 

  • Inohaya K, Yasumasu S, Yasumasu I, Iuchi I, Yamagami K (1999) Analysis of the origin and development of hatching gland cells by transplantation of the embryonic shield in the fish, Oryzias latipes. Dev Growth Differ 41:557–566

    Article  CAS  PubMed  Google Scholar 

  • Isaacs HV, Tannahill D, Slack JM (1992) Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114:711–720

    CAS  PubMed  Google Scholar 

  • Itoh N, Konishi M (2007) The zebrafish fgf family. Zebrafish 4:179–186

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569

    Article  CAS  PubMed  Google Scholar 

  • Iwamatsu T (1994) Stages of normal development in the medaka Oryzias latipes. Zool Sci 11:825–839

    Google Scholar 

  • Izpisua-Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M, Hirose G (1978) Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202:637–639

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M, Hirose G (1981) Clonal organization of the central nervous system of the frog: II. Clones stemming from individual blastomeres of the 32- and 64-cell stages. J Neurosci 1:271–284

    CAS  PubMed  Google Scholar 

  • Jones CM, Armes N, Smith JC (1996) Signalling by TGF-beta family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr Biol 6:1468–1475

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121:3651–3662

    CAS  PubMed  Google Scholar 

  • Joseph EM, Melton DA (1997) Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184:367–372

    Google Scholar 

  • Joseph EM, Melton DA (1998) Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 125:2677–2685

    Google Scholar 

  • Joubin K, Stern CD (1999) Molecular interactions continuously define the organizer during the cell movements of gastrulation. Cell 98:559–571

    Article  CAS  PubMed  Google Scholar 

  • Jovelin R, He X, Amores A, Yan Y-L, Shi R, Qin BY, Roe B, Cresko W, Postlethwait J (2007) Duplication and divergence of fgf8 functions in teleost development and evolution. J Exp Zool (Mol Dev Biol) 308B:730–743

    Article  CAS  Google Scholar 

  • Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814

    Article  CAS  PubMed  Google Scholar 

  • Kane D, Adams R (2002) Life at the edge: epiboly and involution in the zebrafish. Results Probl Cell Differ 40:117–135

    Article  PubMed  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    CAS  PubMed  Google Scholar 

  • Karabagli H, Karabagli P, Ladher RK, Schoenwolf GC (2002) Comparison of the expression patterns of several fibroblast growth factors during chick gastrulation and neurulation. Anat Embryol (Berl) 205:365–370

    Article  CAS  Google Scholar 

  • Karasaki S (1963) Studies on amphibian yolk: 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J Ultrastruct Res 59:225–247

    Article  CAS  PubMed  Google Scholar 

  • Keezer WS (1965) Spontaneous generation, pre-formation and epigenesis. Bios 36:26–32

    Google Scholar 

  • Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42:222–241

    Google Scholar 

  • Keyte AL, Imam T, Smith KK (2007) Limb heterochrony in the marsupial Monodelphis domestica. J Morphol 268:1092

    Google Scholar 

  • Keyte AL, Smith KK (2010) Developmental origins of precocial forelimbs in marsupial neonates. Development 137:4283–4294

    Article  CAS  PubMed  Google Scholar 

  • Khaner O (1998) The ability to initiate an axis in the avian blastula is concentrated mainly at a posterior site. Dev Biol 194:257–266

    Article  CAS  PubMed  Google Scholar 

  • Khaner O, Eyal-Giladi H (1989) The chick’s marginal zone and primitive streak formation: I. Coordinative effect of induction and inhibition. Dev Biol 134:206–214

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko BN, Bruggeman FJ, Sauro HM (2005) Mechanistic and modular approaches to modeling and inference of cellular regulatory networks. In: Systems biology. Springer. pp 143–159

    Google Scholar 

  • Kiecker C, Bates T, Bell E (2016) Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 73:923–947

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51:869–877

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D, Maas A (1992) Induction of dorsal and ventral mesoderm by ectopically expressed Xenopus basic fibroblast growth factor. Development 114:261–269

    Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Law RD (1985a) Cell lineage of zebrafish blastomeres: II. Formation of the yolk syncytial layer. Dev Biol 108:86–93

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Law RD (1985b) Cell lineage of zebrafish blastomeres: III. Clonal analyses of the blastula and gastrula stages. Dev Biol 108:94–101

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108:581–594

    CAS  PubMed  Google Scholar 

  • Kimura W, Yasugi S, Stern CD, Fukuda K (2006) Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289:283–295

    Article  CAS  PubMed  Google Scholar 

  • Kinder SJ, Tsang TE, Wakamiya M, Sasaki H, Behringer RR, Nagy A, Tam PP (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634

    CAS  PubMed  Google Scholar 

  • Kintner CR, Dodd J (1991) Hensen’s node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction. Development 113:1495–1505

    Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126:5759–5770

    Google Scholar 

  • Kölliker A (1882) Entwickelung der Keimblätter des Kaninchens. Salzwasser Verlag Gmbh, Paderborn, Leipzig

    Google Scholar 

  • Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Kress A, Selwood L (2006) Marsupial hypoblast: formation and differentiation of the bilaminar blastocyst in Sminthopsis macroura. Cells Tissues Organs 182:155–170

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B Biol Sci 356:1615–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBonne C, Whitman M (1994) Mesoderm induction by activin requires FGF-mediated intracellular signals. Development 120:463–472

    CAS  PubMed  Google Scholar 

  • Laubenbacher R, Stigler B (2004) A computational algebra approach to the reverse engineering of gene regulatory networks. J Theor Biol 229:523–537

    Article  CAS  PubMed  Google Scholar 

  • Lawson A, Colas JF, Schoenwolf GC (2001) Classification scheme for genes expressed during formation and progression of the avian primitive streak. Anat Rec 262:221–226

    Article  CAS  PubMed  Google Scholar 

  • Lawson A, Schoenwolf GC (2001) Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer. Genesis 29:188–195

    Article  CAS  PubMed  Google Scholar 

  • Lawson A, Schoenwolf GC (2003) Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130:3491–3501

    Article  CAS  PubMed  Google Scholar 

  • Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    CAS  PubMed  Google Scholar 

  • Le Douarin N (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans des recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenése. Bull Biol Fr Belg 103:435–452

    PubMed  Google Scholar 

  • Le Douarin N (1973) A biological cell labeling technique and its use in experimental embryology. Dev Biol 30:217–222

    Article  PubMed  Google Scholar 

  • Lee HO, Choe H, Seo K, Lee H, Lee J, Kim J (2010) Fgfbp1 is essential for the cellular survival during zebrafish embryogenesis. Mol Cells 29:501–507

    Article  PubMed  CAS  Google Scholar 

  • Leikola A (1976) Hensen’s node—the “Organizer” of the amniote embryo. Experientia 32:269–277

    Article  CAS  PubMed  Google Scholar 

  • Levayer R, Lecuit T (2008) Breaking down EMT. Nat Cell Biol 10:757–759

    Article  CAS  PubMed  Google Scholar 

  • Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma Y, Li D, Gao X, Li P, Bai N, Luo M, Tan X, Lu C, Ma X (2012) Arsenic impairs embryo development via down-regulating Dvr1 expression in zebrafish. Toxicol Lett 212:161–168

    Article  CAS  PubMed  Google Scholar 

  • Liguori GL, Borges AC, D'Andrea D, Liguoro A, Goncalves L, Salgueiro AM, Persico MG, Belo JA (2008) Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo. Dev Biol 315:280–289

    Article  CAS  PubMed  Google Scholar 

  • Lombardo A, Isaacs HV, Slack JM (1998) Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 42:1101–1107

    CAS  PubMed  Google Scholar 

  • Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130:2303–2316

    Article  CAS  PubMed  Google Scholar 

  • Long W (1983) The role of the yolk syncytial layer in determination of the plane of bilateral symmetry in the rainbow trout, Salmo gairdneri Richardson. J Exp Zool 228:91–97

    Google Scholar 

  • Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev Biol 1:6

    Google Scholar 

  • Luther W (1935) Entwicklungsphysiologie Untersuchungen am Forellenkeim: Die Rolle des Organisationszentrums bei der Entstehung der Embryonalanlage. Biol Zbl 55:114–137

    Google Scholar 

  • Luther W (1936) Austausch von präsumptiver Epidermis und Medullarplatte beim Forellenkeim. Arch Entwmech Org 135:384–388

    Article  Google Scholar 

  • Malchow H, Petrovskii SV, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman & Hall/CRC Press, London

    Google Scholar 

  • Manejwala FM, Cragoe EJ Jr, Schultz RM (1989) Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 133:210–220

    Article  CAS  PubMed  Google Scholar 

  • Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5:451–462

    Article  PubMed  Google Scholar 

  • Markstein M, Levine M (2002) Decoding cis-regulatory DNAs in the Drosophila genome. Curr Opin Genet Dev 12:601–606

    Google Scholar 

  • Markstein M, Markstein P, Markstein V, Levine MS (2002) Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci U S A 99:763–768

    Google Scholar 

  • Massague J (1992) Receptors for the TGF-beta family. Cell 69:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810

    Article  CAS  PubMed  Google Scholar 

  • Mate KE, Robinson ES, Vandeberg JL, Pedersen RA (1994) Timetable of in vivo embryonic development in the grey short-tailed opossum (Monodelphis domestica). Mol Reprod Dev 39:365–374

    Google Scholar 

  • Mathieu J, Griffin K, Herbomel P, Dickmeis T, Strahle U, Kimelman D, Rosa FM, Peyrieras N (2004) Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations. Development 131:629–641

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A (1995) Functional analysis of activins during mammalian development. Nature 374:354–356

    Article  CAS  PubMed  Google Scholar 

  • May C (2013) Turtle embryos. In: Devo ASU Blog: Dev Bio, Evo Devo and Science in general. http://devoasu.blogspot/2013/06turtles.html

  • Melby AE, Warga RM, Kimmel CB (1996) Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122:2225–2237

    CAS  PubMed  Google Scholar 

  • Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ et al (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298

    Article  CAS  PubMed  Google Scholar 

  • Meno C, Takeuchi J, Sakuma R, Koshiba-Takeuchi K, Ohishi S, Saijoh Y, Miyazaki J, ten Dijke P, Ogura T, Hamada H (2001) Diffusion of nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell 1:127–138

    Article  CAS  PubMed  Google Scholar 

  • Meyer AW (1932) Essays on the history of embryology: Part VI. Cal West Med 36:341–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  CAS  PubMed  Google Scholar 

  • Mitrani E, Gruenbaum Y, Shohat H, Ziv T (1990a) Fibroblast growth factor during mesoderm induction in the early chick embryo. Development 109:387–393

    CAS  PubMed  Google Scholar 

  • Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A (1990b) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63:495–501

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Izawa T, Kuroiwa A, Kikuchi Y (2006) Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Dev Biol 300:612–622

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Yamaha E, Wakahara M, Kuroiwa A, Takeda H (1996) Mesoderm induction in zebrafish. Nature 383:131–132

    Article  CAS  Google Scholar 

  • Moody SA (1987a) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578

    Google Scholar 

  • Moody SA (1987b) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319

    Google Scholar 

  • Morgan TH (1893) Experimental studies on teleost eggs. Anat Anz 8:803–814

    Google Scholar 

  • Morgan TH (1895) The formation of the fish embryo. J Morphol 10:419–472

    Article  Google Scholar 

  • Morrill GA, Kostellow AB, Murphy JB (1974) Role of Na+, K + -ATPase in early embryonic development. Ann N Y Acad Sci 242:543–559

    Article  CAS  PubMed  Google Scholar 

  • Muller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:721–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai H, Sezaki M, Kakiguchi K, Nakaya Y, Lee HC, Ladher R, Sasanami T, Han JY, Yonemura S, Sheng G (2015) Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 142:1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura O (1938) Tail formation in the urodele. Zool Mag (Tokyo) 50:442–446

    Google Scholar 

  • Nakamura O (1942) Die Entwicklung der hinteren Körperhälfte bei Urodelen. Annot Zool Jap 21:169–238

    Google Scholar 

  • Nakamura O, Takasaki H, Ishihara M (1970) Formation of the organizer from combinations of presumptive ectoderm and endoderm: I. Proc Jpn Acad 47:313–318

    Google Scholar 

  • Nieuwkoop PD (1969) The formation of mesoderm in urodelean amphibians. Wilhelm Roux’ Arch 162:341–373

    Article  Google Scholar 

  • Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    CAS  PubMed  Google Scholar 

  • Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468

    CAS  PubMed  Google Scholar 

  • Nutt SL, Dingwell KS, Holt CE, Amaya E (2001) Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev 15:1152–1166

    Google Scholar 

  • Ober EA, Schulte-Merker S (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215:167–181

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer JM (1934a) Experimental studies on the developing perch (Perca flavscens Mitchill). Proc Soc Exp Biol N Y 31:1123–1124

    Google Scholar 

  • Oppenheimer JM (1934b) Experiments on early developing stages of Fundulus. Proc Natl Acad Sci U S A 20:536–538

    Google Scholar 

  • Oppenheimer JM (1935) Processes of localization in developing Fundulus. Proc Natl Acad Sci U S A 21:551–553

    Google Scholar 

  • Oppenheimer JM (1936a) The development of isolated blastoderms of Fundulus heteroclitus. J Exp Zool 72:247–269

    Article  Google Scholar 

  • Oppenheimer JM (1936b) Structures developed in amphibians by implantation of living fish organizer. Proc Soc Exp Biol N Y 34:461–463

    Article  Google Scholar 

  • Oppenheimer JM (1936c) Transplantation experiments on developing teleosts (Fundulus and Perca). J Exp Zool 72:409–437

    Article  Google Scholar 

  • Oppenheimer JM (1940) The non-specificity of the germ-layers. Q Rev Biol 15:98–124

    Article  Google Scholar 

  • Oppenheimer JM (1947) Organization of the teleost blastoderm. Q Rev Biol 22:105–118

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer JM (1959) Extraembryonic transplantation of fragmented shield grafts in Fundulus. J Exp Zool 142:441–459

    Article  CAS  PubMed  Google Scholar 

  • Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127:2503–2514

    CAS  PubMed  Google Scholar 

  • Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126:3229–3240

    Google Scholar 

  • Pander CH (1817a) Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye. Bayerische Julius-Maximilians-Universität Würzburg, Wurzburg

    Google Scholar 

  • Pander CH (1817b) Dissertatio inauguralis sistens historiam metamorphoseos, quam ovum incubatum prioribus quinque diebus subit. Julius-Maximilians-Universität Würzburg, Wirceburgi, p 69, 61p

    Google Scholar 

  • Pasteels JJ (1936) Études sur la gastrulation des vertébrés méroblastiques: I. Téléostéens. Arch Biol (Liege) 47:205–308

    Google Scholar 

  • Pasteels JJ (1937) Etude sur la gastrulation des vértébres méroblastiques: II. Reptiles. Arch Biol (Liege) 48:105–184

    Google Scholar 

  • Pasteels JJ (1942) New observations concerning the maps of presumptive areas of the young amphibian gastrula (Ambystoma and Discoglossus). J Exp Zool 89:255–281

    Article  Google Scholar 

  • Pasteels JL (1957) La formation de l'endophylle et de l'endoblast vitellin chez les reptiles, chéloniens et lacertiliens. Acta Anat 30:601–612

    Article  CAS  PubMed  Google Scholar 

  • Pasteels JL (1970) Développment embryonnaire. Masson, Paris, France

    Google Scholar 

  • Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C (2016) Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 535:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips BT, Bolding K, Riley BB (2001) Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 235:351–365

    Article  CAS  PubMed  Google Scholar 

  • Piavis GW (1961) Embryological stages in the sea lamprey and effects of temperature on development. Fisheries 55:111–143

    Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepenburg O, Grimmer D, Williams PH, Smith JC (2004) Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 131:4977–4986

    Article  CAS  PubMed  Google Scholar 

  • Pierce GB, Arechaga J, Muro C, Wells RS (1988) Differentiation of ICM cells into trophectoderm. Am J Pathol 132:356–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  CAS  PubMed  Google Scholar 

  • Prud'homme B, Gompel N (2010) Evolutionary biology: genomic hourglass. Nature 468:768–769

    Article  PubMed  CAS  Google Scholar 

  • Psychoyos D, Stern CD (1996) Restoration of the organizer after radical ablation of Hensen’s node and the anterior primitive streak in the chick embryo. Development 122:3263–3273

    CAS  PubMed  Google Scholar 

  • Purcell SM, Keller R (1993) A different type of amphibian mesoderm morphogenesis in Ceratophrys ornata. Development 117:307–317

    Google Scholar 

  • Qian H, Murray JD (2001) A simple method of parameter space determination for diffusion-driven instability with three species. Appl Math Lett 14:405–411

    Article  Google Scholar 

  • Ramis JM, Collart C, Smith JC (2007) Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division. PLoS One 2:e213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rankin CT, Bunton T, Lawler AM, Lee SJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24:262–265

    Article  CAS  PubMed  Google Scholar 

  • Rebagliati MR, Toyama R, Fricke C, Haffter P, Dawid IB (1998a) Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199:261–272

    Article  CAS  PubMed  Google Scholar 

  • Rebagliati MR, Toyama R, Haffter P, Dawid IB (1998b) cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A 95:9932–9937

    Google Scholar 

  • Rebagliati MR, Weeks DL, Harvey RP, Melton DA (1985) Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42:769–777

    Article  CAS  PubMed  Google Scholar 

  • Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395

    CAS  PubMed  Google Scholar 

  • Reineck (1869) Über die Schichtung des Forellenkeims. Arch Mikr Anat 5:356–366

    Article  Google Scholar 

  • Richards RJ (2009) Haeckel’s embryos: fraud not proven. Biol Philos 24:147–154

    Article  Google Scholar 

  • Richardson MK, Admiraal J, Wright GM (2010) Developmental anatomy of lampreys. Biol Rev Camb Philos Soc 85:1–33

    Article  PubMed  Google Scholar 

  • Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol (Berl) 196:91–106

    Article  CAS  Google Scholar 

  • Robertson EJ (2014) Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin Cell Dev Biol 32:73–79

    Article  CAS  PubMed  Google Scholar 

  • Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell- derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078

    CAS  PubMed  Google Scholar 

  • Roe SA (1975) The development of Albrecht Von Haller’s views on embryology. J Hist Biol 8:167–190

    Article  CAS  PubMed  Google Scholar 

  • Roe SA (1981) The natural philosophy of Albrecht von Haller. Arno Press, New York

    Google Scholar 

  • Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, Dawid IB (1988) Mesoderm induction in amphibians: the role of TGF-beta 2-like factors. Science 239:783–785

    Article  CAS  PubMed  Google Scholar 

  • Rudnick D (1935) Regional restriction of potencies in the chick during embryogenesis. J Exp Zool 71:83–99

    Article  Google Scholar 

  • Ryder JA (1884) A contribution to the embryography of osseus fishes: with special reference to the development of the cod (Gadus Morrhua). US Government Printing Office 71

    Google Scholar 

  • Sagerstrom CG, Grinbalt Y, Sive H (1996) Anteroposterior patterning in the zebrafish, Danio rerio: an explant assay reveals inductive and suppressive cell interactions. Development 122:1873–1883

    Google Scholar 

  • Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M et al (2000) Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 5:35–47

    Article  CAS  PubMed  Google Scholar 

  • Sakuma R, Ohnishi Yi Y, Meno C, Fujii H, Juan H, Takeuchi J, Ogura T, Li E, Miyazono K, Hamada H (2002) Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7:401–412

    Article  CAS  PubMed  Google Scholar 

  • Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395:185–189

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer- specific homeobox genes. Cell 79:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403

    Article  PubMed  Google Scholar 

  • Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 93:790–794

    Google Scholar 

  • Saxen L, Toivonen S, Vainio T (1964) Initial stimulus and subsequent interactions in embryonic induction. J Embryol Exp Morphol 12:333–338

    CAS  PubMed  Google Scholar 

  • Schmitt S (2005) From eggs to fossils: epigenesis and transformation of species in Pander’s biology. Int J Dev Biol 49:1–8

    Article  PubMed  Google Scholar 

  • Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021–1032

    CAS  PubMed  Google Scholar 

  • Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387:862–863

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Merker S, Smith JC, Dale L (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction? EMBO J 13:3533–3541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sedgwick AG (1894) On the law of development commonly known as von Baer’s law; and on the significance of ancestral rudiments in embryonic development. Q J Microsc Sci 36:35–52

    Google Scholar 

  • Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358

    Google Scholar 

  • Seleiro EA, Connolly DJ, Cooke J (1996) Early developmental expression and experimental axis determination by the chicken Vg1 gene. Curr Biol 6:1476–1486

    Article  CAS  PubMed  Google Scholar 

  • Selwood L (1986) Cleavage in vitro following destruction of some blastomeres in the marsupial Antechinus stuartii (Macleay). J Embryol Exp Morphol 92:71–84

    Google Scholar 

  • Selwood L (1992) Mechanisms underlying the development of pattern in marsupial embryos. Curr Top Dev Biol 27:175–233

    Article  CAS  PubMed  Google Scholar 

  • Selwood L (1994) Development of early cell lineages in marsupial embryos: an overview. Reprod Fertil Dev 6:507–527

    Article  CAS  PubMed  Google Scholar 

  • Selwood L, Johnson MH (2006) Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays 28:128–145

    Article  PubMed  Google Scholar 

  • Selwood L, Robinson ES, Pedersen RA, Vandeberg JL (1997) Development in vitro of Marsupials: a comparative review of species and a timetable of cleavage and early blastocyst stages of development in Monodelphis domestica. Int J Dev Biol 41:397–410

    Google Scholar 

  • Shah SB, Skromne I, Hume CR, Kessler DS, Lee KJ, Stern CD, Dodd J (1997) Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. Development 124:5127–5138

    CAS  PubMed  Google Scholar 

  • Shamim H, Mason I (1999) Expression of Fgf4 during early development of the chick embryo. Mech Dev 85:189–192

    Article  CAS  PubMed  Google Scholar 

  • Sheng G (2015) Epiblast morphogenesis before gastrulation. Dev Biol 401:17–24

    Article  CAS  PubMed  Google Scholar 

  • Shih J, Fraser SE (1995) Distribution of tissue progenitors within the shield region of the zebrafish gastrula. Development 121:2755–2765

    CAS  PubMed  Google Scholar 

  • Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122:1313–1322

    CAS  PubMed  Google Scholar 

  • Shimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, Kobayashi D, Takeda H (2008) Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development 135:281–290

    Article  CAS  PubMed  Google Scholar 

  • Shook DR, Majer C, Keller R (2002) Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak. Dev Biol 248:220–239

    Article  CAS  PubMed  Google Scholar 

  • Skromne I, Stern CD (2002) A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 114:115–118

    Article  CAS  PubMed  Google Scholar 

  • Slack JM, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200

    Article  CAS  PubMed  Google Scholar 

  • Slack JM, Forman D (1980) An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. J Embryol Exp Morphol 56:283–299

    CAS  PubMed  Google Scholar 

  • Slack JM, Holland PW, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    Article  CAS  PubMed  Google Scholar 

  • Smith JC (1987) A mesoderm-inducing factor is produced by Xenopus cell line. Development 99:3–14

    Google Scholar 

  • Smith JC, Malacinski GM (1983) The origin of the mesoderm in an anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum. Dev Biol 98:250–254

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Price BM, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345:729–731

    Google Scholar 

  • Smith JC, Slack JM (1983) Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J Embryol Exp Morphol 78:299–317

    Google Scholar 

  • Smith JC, Yaqoob M, Symes K (1988) Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor. Development 103:591–600

    CAS  PubMed  Google Scholar 

  • Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186

    Article  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840

    Google Scholar 

  • Smith WC, McKendry R, Ribisi S Jr, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82:37–46

    Google Scholar 

  • Snow MH, Bennett D (1978) Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol 47:39–52

    CAS  PubMed  Google Scholar 

  • Snow MHL (1977) Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 42:293–303

    Google Scholar 

  • Solnica-Krezel L (2003) Vertebrate development: taming the nodal waves. Curr Biol 13:R7–R9

    Article  CAS  PubMed  Google Scholar 

  • Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228

    Article  CAS  PubMed  Google Scholar 

  • Sorre B, Warmflash A, Brivanlou AH, Siggia ED (2014) Encoding of temporal signals by the TGF-beta pathway and implications for embryonic patterning. Dev Cell 30:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spemann H, Mangold H (1924) Über die Induktion von Embryonalanalgen durch Implantation artfremder Organisatoren. Wilhelm Roux’ Arch Entwicklungsmech 100:599–638

    Google Scholar 

  • Stern CD, Yu RT, Kakizuka A, Kintner CR, Mathews LS, Vale WW, Evans RM, Umesono K (1995) Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Dev Biol 172:192–205

    Article  CAS  PubMed  Google Scholar 

  • Storey KG, Crossley JM, De Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114:729–741

    CAS  PubMed  Google Scholar 

  • Stower MJ, Diaz RE, Fernandez LC, Crother MW, Crother B, Marco A, Trainor PA, Srinivas S, Bertocchini F (2015) Bi-modal strategy of gastrulation in reptiles. Dev Dyn [Epub ahead of print]

    Google Scholar 

  • Streit A, Lee KJ, Woo I, Roberts C, Jessell TM, Stern CD (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519

    CAS  PubMed  Google Scholar 

  • Stricker S (1865) Untersucheungen über die Entwicklung der Bachforelle. Sitzungberichte der Wiener k Akad d Wiss LI

    Google Scholar 

  • Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith EA, Wolfman NM, McCoy JM, Sive HL (1999a) derriere: a TGF-beta family member required for posterior development in Xenopus. Development 126:1467–1482

    Google Scholar 

  • Sun X, Meyers EN, Lewandoski M, Martin GR (1999b) Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 13:1834–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Tseng WC, Fan X, Ball R, Dougan ST (2014) Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning. Dev Cell 28:322–334

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127:5319–5329

    Google Scholar 

  • Takata C, Yamada T (1960) Endodermal tissues developed from the isolated newt ectoderm under the influence of guinea pig bone marrow. Embryologia 5:8–20

    Article  Google Scholar 

  • Takeuchi M, Okabe M, Aizawa S (2009a) The genus Polypterus (bichirs): a fish group diverged at the stem of ray-finned fishes (Actinopterygii). Cold Spring Harb Protoc 2009: pdb emo117

    Google Scholar 

  • Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009b) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 332:90–102

    Article  CAS  PubMed  Google Scholar 

  • Tam PP (1989) Regionalisation of the mouse embryonic ectoderm: allocation of prospective ectodermal tissues during gastrulation. Development 107:55–67

    CAS  PubMed  Google Scholar 

  • Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126

    CAS  PubMed  Google Scholar 

  • Tan Q, Balofsky A, Weisz K, Peng C (2009a) Role of activin, transforming growth factor-beta and bone morphogenetic protein 15 in regulating zebrafish oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol 153:18–23

    Article  PubMed  CAS  Google Scholar 

  • Tan Q, Zagrodny A, Bernaudo S, Peng C (2009b) Regulation of membrane progestin receptors in the zebrafish ovary by gonadotropin, activin, TGF-beta and BMP-15. Mol Cell Endocrinol 312:72–79

    Article  CAS  PubMed  Google Scholar 

  • Tannahill D, Isaacs HV, Close MJ, Peters G, Slack JM (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115:695–702

    CAS  PubMed  Google Scholar 

  • Thisse B, Wright CV, Thisse C (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403:425–428

    Article  CAS  PubMed  Google Scholar 

  • Thisse C, Thisse B (1999) Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction. Development 126:229–240

    CAS  PubMed  Google Scholar 

  • Thisse C, Thisse B, Halpern ME, Postlethwait JH (1994) Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev Biol 164:420–429

    Article  CAS  PubMed  Google Scholar 

  • Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493

    Google Scholar 

  • Thomsen GH, Melton DA (1993) Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74:433–441

    Google Scholar 

  • Tiedemann H, Lottspeich F, Davids M, Knochel S, Hoppe P, Tiedemann H (1992) The vegetalizing factor. A member of the evolutionarily highly conserved activin family. FEBS Lett 300:123–126

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann H, Tiedemann H (1959) Experiments on the extraction of a mesodermal inductor from chick embryo. Hoppe Seylers Z Physiol Chem 314:156–176

    Article  CAS  PubMed  Google Scholar 

  • Toivonen S (1953) Bone-marrow of the guinea-pig as a mesoderm inductor in implantation experiments with embryos of triturus. J Embryol Exp Morphol 1:97–104

    Google Scholar 

  • Toyama R, O'Connell ML, Wright CV, Kuehn MR, Dawid IB (1995) Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121:383–391

    CAS  PubMed  Google Scholar 

  • Toyoizumi R, Ogasawara T, Takeuchi S, Mogi K (2005) Xenopus nodal related-1 is indispensable only for left-right axis determination. Int J Dev Biol 49:923–938

    Google Scholar 

  • Trinkaus JP (1973) Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol 30:69–103

    Google Scholar 

  • Trinkaus JP (1984) Cells into organs. The forces that shape the embryo. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Trinkaus JP (1996) Ingression during early gastrulation of Fundulus. Dev Biol 177:356–370

    Article  CAS  PubMed  Google Scholar 

  • Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung TC, Chang CY, Tung YFY (1954) Experiments on the developemntal potencies of blastoderms and fragments of teleostean eggs separated latitudinally. Proc Zool Soc Lond 115:175–188

    Article  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72

    Article  Google Scholar 

  • van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS (2015) A temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev Cell 35:175–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varlet I, Collignon J, Robertson EJ (1997) nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044

    CAS  PubMed  Google Scholar 

  • Vogt W (1925) Gestaltngsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. Vorwart über Wege und Ziele: I. Teil: Methodik und Wirkungsweise der örtlichen Vitalfärbung mit Agar als Farbträger. Roux Arch 106

    Google Scholar 

  • Vogt W (1929) Gestaltanalyse am Amphibienkein mit örtlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux’ Arch Entwicklungsmech Org 120:384–706

    Article  Google Scholar 

  • Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1932) Experiments on the development of the chick and the duck embryo cultivated in vitro. Proc Trans R Soc Lond B 211:179–230

    Article  Google Scholar 

  • Waddington CH (1937) Experiments on determination in the rabbit embryo. Arch Biol 48:273–290

    Google Scholar 

  • Waddington CH, Schmidt GA (1933) Induction by heteroplastic grafts of the primitive streak in birds. Wilhelm Roux’ Arch Entwicklungsmech Org 128:522–563

    Article  Google Scholar 

  • Wall NA, Craig EJ, Labosky PA, Kessler DS (2000) Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene. Dev Biol 227:495–509

    Article  CAS  PubMed  Google Scholar 

  • Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001

    Article  PubMed  CAS  Google Scholar 

  • Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580

    CAS  PubMed  Google Scholar 

  • Warga RM, Nusslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838

    CAS  PubMed  Google Scholar 

  • Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH (2014) A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 11:847–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DL, Rebagliati MR, Harvey RP, Melton DA (1985) Localized maternal mRNAs in Xenopus laevis eggs. Cold Spring Harb Symp Quant Biol 50:21–30

    Google Scholar 

  • Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Werneburg I, Sánchez-Villagra MR (2011) The early development of the echidna, Tachyblossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zool (Stockholm) 92:75–88

    Google Scholar 

  • Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:174–180

    Article  CAS  PubMed  Google Scholar 

  • Wetzel R (1925) Untersuchungen am Hühnerkeim: I. Über die Untersuchungen des lebenden Keims mit neueren Methoden, besonders der Vogtschen vitelen Farmarkierung. Wilhelm Roux’ Arch Entwicklungsmech Org 106:463–468

    Article  Google Scholar 

  • Wetzel R (1929) Untersuchungen am Hünchen. Die Entwicklung des Keims während der ersten beiden Bruttage. Wilhelm Roux’ Arch Entwicklungsmech Org 119:188–321

    Article  Google Scholar 

  • Willier BH, Rawles ME (1931) The relation of Hensen’s node to the differentiating capacity of whole chick blastoderms as studied in chorio-allantoic grafts. J Exp Zool 59:429–465

    Article  Google Scholar 

  • Wilson HVP (1891) The embryology of the sea bass (Serranus atrarius). Fish Bull 9:209–277

    Google Scholar 

  • Wilson JT, Hill JP (1902) Primitive knot and early gastrulation cavity co-existing with independent primitive streak in Ornithorhynchus. Proc R Soc Lond 71:314–322

    Google Scholar 

  • Wilson JT, Hill JP (1915) The embryonic area and so-called “primitive knot” in the early montreme egg. J Cell Sci 2–61:15–25

    Google Scholar 

  • Wittbrodt J, Rosa FM (1994) Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: the role of maternal activin. Genes Dev 8:1448–1462

    Article  CAS  PubMed  Google Scholar 

  • Wood A, Timmermans LPM (1988) Teleost epiboly: a reassessment of deep cell movement in the germ ring. Development 102:575–585

    Google Scholar 

  • Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343

    Article  CAS  PubMed  Google Scholar 

  • Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128:167–180

    CAS  PubMed  Google Scholar 

  • Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A (2014a) Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 6:272–285

    Article  CAS  PubMed  Google Scholar 

  • Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C (2014b) Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344:87–89

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8:3032–3044

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Meno C, Sakai Y, Shiratori H, Mochida K, Ikawa Y, Saijoh Y, Hamada H (2001) The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 15:1242–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi H, Miyakawa N, Miyake A, Itoh N (2009) Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev Biol 332:177–185

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Dormann D, Munsterberg AE, Weijer CJ (2002) Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3:425–437

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT et al (2010) Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 19:287–298

    Article  CAS  PubMed  Google Scholar 

  • Yeo C, Whitman M (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7:949–957

    Article  CAS  PubMed  Google Scholar 

  • Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T et al (2007) Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand-receptor relationships. Dev Biol 304:326–337

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361:543–547

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  PubMed  Google Scholar 

  • Ziv T, Shimoni Y, Mitrani E (1992) Activin can generate ectopic axial structures in chick blastoderm explants. Development 115:689–694

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Dougan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tseng, WC., Munisha, M., Gutierrez, J.B., Dougan, S.T. (2017). Establishment of the Vertebrate Germ Layers. In: Pelegri, F., Danilchik, M., Sutherland, A. (eds) Vertebrate Development. Advances in Experimental Medicine and Biology, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-319-46095-6_7

Download citation

Publish with us

Policies and ethics