Skip to main content

Microbe Induced Degradation of Pesticides in Agricultural Soils

  • Chapter
  • First Online:
Microbe-Induced Degradation of Pesticides

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The extensive use of pesticides has played hazard with living beings and the environment and also these chemicals persist and leach in environment for a long time because of more water solubility, tendency to adsorb to the soil (soil adsorption) and more half-life that is tendency to persistence in the environment. The indigenous microbial strains are more effective pesticide degrading microbes because they are survived and grow very well in particular soil environment than exo-genic microbes which brought from other agro-climatic region. In this chapter, we have attempted to discuss the recent challenge of pesticide problem in soil environment and their degradation by the use of effective indigenous pesticides degrading microorganism. Therefore, the use of pesticide degrading microbial consortia is an eco-friendly technology for sustainable agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, W. R., Nogales, B., Golyshin, P. N., Pieper, D. H., & Timmis, K. N. (2002). Polychlorinated biphenyl-degrading microbial communities and sediments. Current Opinion in Microbiology, 5, 246–253.

    Article  Google Scholar 

  • Agnihotri, N. P. (1999). Pesticide safety and monitoring. New Delhi: All India Coordinated Research Project on Pesticides Residues, Indian Council of Agricultural Research.

    Google Scholar 

  • Alexander, M. (1981). Biodegradation of chemicals of environmental concern. Science, 211, 132–138.

    Article  Google Scholar 

  • Anonymous. (1991). Survey of the Environment, The Hindu, Government of India, Eleventh Five-Year Plan (2008–2012) Planning Commission of India, New Delhi, http://planningcommission.nic.in/plans/planrel/fiveyr/welcome.html

  • Bhatnagar, V. K. (2001). Pesticides pollution: trends and perspectives. ICMR Bulletin, 31, 87–88.

    Google Scholar 

  • Bollag, J. M. (1974). Microbial transformation of pesticides. Advances in Applied Microbiology, 18, 75–130.

    Article  Google Scholar 

  • Bouseba, B., Zertal, A., Beguet, J., Rouard, N., Devers, M., Martin, C., et al. (2009). Evidence for 2, 4-D mineralisation in mediterranean soils: Impact of moisture content and temperature. Pest Management Science, 65, 1021–1029.

    Article  Google Scholar 

  • Burchfield, H. P., & Storrs, E. E. (1957). Effect of chlorine substitution and isomerism on intractions of S-triazine derivatives with conidia of Neurospora sitophilia. Boyce Thompson Institute for Plant Research, 18, 429–452.

    Google Scholar 

  • Burns, R. G. (1975). Factors affecting pesticide loss from soil. In E. A. Paul & A. D. McLaren (Eds.), Soil biochemistry (pp. 103–141). New York: Marcel Dekker Inc.

    Google Scholar 

  • Calvet, R., Barriuso, E., Bedos, C., Benoit, P., Charnay, M. P., & Coquet, Y. (2005). Les pesticides dans les sols. Conséquences agronomiqueset environnementales (Editions France Agricole), Dunod, ISBN 2-85557-119-7, Paris.

    Google Scholar 

  • Chacko, C. I., Lockwood, J. L., & Zabik, M. (1966). Chlorinated hydrocarbon pesticides: Degradation by microbes. Science, 154, 893–895.

    Article  Google Scholar 

  • Chaplain, V., Mougin, C., Barriuso, E., Mamy, L., Vieublé-Gonod, L., & Benoit, P., et al. (2011). Fate of pesticides in soils: Toward an integrated approach of influential factors. INTECH Open Access Publisher.

    Google Scholar 

  • Chen, X., Christopher, A., Jones, J. P., Bell, S. G., Guo, Q., Xu, F., et al. (2002). Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450 cam with 1, 3,5 trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenezene. Journal of Biological Chemistry, 277, 37519–37526.

    Article  Google Scholar 

  • Coats, J. R. (1991). Pesticide degradation mechanisms and environmental activation. In ACS Symposium Series-American Chemical Society (USA).

    Google Scholar 

  • Cork, D. J., & Krueger, J. P. (1991). Microbial transformation of herbicide and pesticides. Advances in Applied Microbiology, 36, 1–66.

    Article  Google Scholar 

  • Cox, L., & Walker, A. (1999). Studies of time-dependent sorption of linuron and isoproturon in soils. Chemosphere, 38(12), 2707–2718.

    Article  Google Scholar 

  • Cui, Z., Li, S., & Fu, G. (2001). Isolation of methyl-parathion-degrading strain M6 and cloning of the methyl-parathion hydrolase gene. Applied and Environmental Microbiology, 67, 4922–4925.

    Article  Google Scholar 

  • Cycon, M., Markowicz, A., Borymski, S., Wojcik, M., & Piotrowska-Seget, Z. (2013). Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities. Journal of Environmental Management, 131, 55–65.

    Article  Google Scholar 

  • Deer, H. M., & Beard, R. (2001). Effect of water pH on the chemical stability of pesticides. AG/Pesticides, 14, 1.

    Google Scholar 

  • Desaint, S., Hartmann, A., Parekh, N. R., & Fournier, J. C. (2000). Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiology Ecology, 34, 173–180.

    Article  Google Scholar 

  • Didierjean, L., Gondet, L., Perkins, R., Lau, S. M. C., Schaller, H., O’Keefe, D. P., et al. (2002). Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology, 130(1), 179–189.

    Article  Google Scholar 

  • El-Ghamry, A. M., Huang, C. Y., & Xu, J. M. (2001). Combined effects of two sulfonylurea herbicides on soil microbial biomass and N-mineralization. Journal of Environmental Sciences, 13, 311–317.

    Google Scholar 

  • EPA. (2002). EPA’s National Service Center for Environmental Publications. Cincinnati: Endosulfan RED Facts. http://www.epa.gov/pesticides/reregistration/endosulfan/S

  • FAO. (2005). Proceedings of the Asia Regional Workshop. Bangkok: Regional Office for Asia and the Pacific.

    Google Scholar 

  • Fetzner, S. R., & Lingens, F. (1994). Bacterial dehalogenases. Microbiological Reviews, 58(4), 641–685.

    Google Scholar 

  • Finley, S. D., Broadbelt, L. J., & Hatzimanikatis, V. (2010). Insilico feasibility of novel biodegradation pathways for 1, 2, 4-trichlorobenzene. BMC Systems Biology, 4, 4–14.

    Article  Google Scholar 

  • Fragoeiro, S., & Magan, N. (2005). Impact of hydrolytic enzyme activity of two white rot fungi on degradation of a mixture of three pesticides under osmotic stress. Environmental Microbiology, 7, 348–355.

    Article  Google Scholar 

  • Gold, R. E., Howell, H. N., Pawson, B. M., Wright, M. S., & Lutz, J. L. (1996). Persistance and bioavailability of termicides to subterranean termite from five soil types and location in Texas. Sociobiology, 28, 337–363.

    Google Scholar 

  • Gupta, P. K. (2004). Pesticide exposure—Indian scene. Toxicology, 198(1), 83–90.

    Article  Google Scholar 

  • Hammouda, O. (1999). Response of the paddy field cyanobacterium Anabaena doliolum to carbofuran. Ecotoxicology and Environmental Safety, 44(2), 215–219.

    Article  Google Scholar 

  • Horne, I., Sutherland, T. D., Oakeshott, J. G., & Russell, R. J. (2002). Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology, 148, 2687–2695.

    Article  Google Scholar 

  • ICAR. (1967). Report of the special committee on harmful effects of pesticides (p. 78). ICAR: New Delhi.

    Google Scholar 

  • Ingram, C. W., Coyne, M. S., & Williams, D. W. (2005). Effects of commercial diazinon and imidacloprid on microbial urease activity in soil and sod. Journal of Environmental Quality, 34(5), 1573–1580.

    Article  Google Scholar 

  • Ismail, B. S., Mazlinda, M., & Zuriati, Z. (2012). Effects of temperature, soil moisture content and soil type on the degradation of cypermethrin in two types of Malaysian agricultural soils. World Applied Sciences Journal, 17, 428–432.

    Google Scholar 

  • Jain, R. K., Kapur, M., Labana, S., Lal, B., Sarma, P. M., Bhattacharya, D., et al. (2005). Microbial diversity: Application of microorganisms for the biodegradation of xenobiotics. Current Science, 89, 101–112.

    Google Scholar 

  • Kalam, A., & Mukherjee, A. K. (2001). Influence of hexaconazole, carbofuran and ethion on soil microflora and dehydrogenase activities in soil and intact cell. Indian Journal of Experimental Biology, 39(1), 90–94.

    Google Scholar 

  • Kannan, K., Tanabe, S., Ramesh, A., Subramanian, A., & Tatsukawa, R. (1992). Persistent orgnochlorine residues in food stuffs from India and their implications on human dietary exposure. Journal of Agricultural and Food Chemistry, 40, 518–524.

    Article  Google Scholar 

  • Khan, M. S., Chaudhry, P., Wani, P. A., & Zaidi, A. (2006). Biotoxic effects of the herbicides on growth, seed yield, and grain protein of green gram. Journal of Applied Sciences and Environmental Management, 10(3), 141–146.

    Google Scholar 

  • Khare, E., & Arora, N. K. (2015). Effects of soil environment on field efficacy of microbial inoculants. In Plant Microbes Symbiosis: Appl. Facet. (pp. 353–381). India: Springer.

    Google Scholar 

  • Kumar, K., Devi, S. S., Krishnamurthi, K., Kanade, G. S., & Chakrabarti, T. (2007). Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere, 68(2), 317–322.

    Article  Google Scholar 

  • Kyei-Boahen, S., Slinkard, A. E., & Walley, F. L. (2001). Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Canadian Journal of Microbiology, 47, 585–589.

    Article  Google Scholar 

  • Laemmli, C. M., Leveau, J. H. J., Zehnder, A. J. B., & Van der Meer, J. R. (2000). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). Journal of Bacteriology, 182, 4165–4172.

    Article  Google Scholar 

  • Lakshmi, A. (1993). Pesticides in India: Risk assessment to aquatic ecosystems. Science of the Total Environment, 134, 243–253.

    Article  Google Scholar 

  • Lallas, P. L. (2001). The Stockholm Convention on persistent organic pollutants. American Journal of International Law, 692–708.

    Google Scholar 

  • Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66, 59–64.

    Article  Google Scholar 

  • Matsumura, F., & Boush, G. M. (1966). Malathion degradation by Trichoderma viride and a Pseudomonas species. Science, 153, 1278–1280.

    Article  Google Scholar 

  • Monkiedje, A., Ilori, M. O., & Spiteller, M. (2002). Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology & Biochemistry, 34, 1939–1948.

    Article  Google Scholar 

  • Naumann, K. (2000). Influence of chlorine substituents on biological activity of chemicals: A review. Pest Management Science, 56(1), 3–21.

    Article  Google Scholar 

  • Niewiadomska, A. (2004). Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pratense L.). Polish Journal of Environmental Studies, 13(4), 403–410.

    Google Scholar 

  • Ogunseitan, O. A., & Odeyemi, O. (1985). Effects of lindane, captan and malathion on nitrification, sulphur oxidation, phosphate solubilization, and respiration in a tropical soil. Environmental Pollution, 37(1), 343–354.

    Article  Google Scholar 

  • Ortiz-Hernández, M. L., Quintero-Ramírez, R., Nava-Ocampo, A. A., & Bello-Ramírez, A. M. (2003). Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides. Fundamental & Clinical Pharmacology, 17(6), 717–723.

    Article  Google Scholar 

  • Ortiz-Hernández, M. L., Sánchez-Salinas, E., Dantán-González, E., Castrejón-Godínez, M. L. (2013). Pesticide biodegradation: Mechanisms, genetics and strategies to enhance the process. In R. Chamy, F. Rosenkranz (Eds.), Biodegradation-life of science (pp. 251–287). Intech.

    Google Scholar 

  • Ortiz-Hernández, M. L., Sánchez-Salinas, E., Olvera-Velona, A., Folch-Mallol, J. L. (2011). Pesticides in the environment: Impacts and its biodegradation as a strategy for residues treatment. In M. Stoytcheva (Ed.), Pesticides-formulations, effects, fate, In-Tech, doi:10.5772/13534. Available from: http://www.intechopen.com/books/pesticides-formulations-effects-fate/pesticides-in-the-environment-impacts-and-itsbiodegradation-as-a-strategy-for-residues-treatment

  • Padmanabhan, P., Padmanabhan, S., DeRito, C., Gray, A., Gannon, D., Snape, J. R., et al. (2003). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Applied and Environmental Microbiology, 69(3), 1614–1622.

    Article  Google Scholar 

  • Pal, R., Chakrabarti, K., Chakraborty, A., & Chowdhury, A. (2006). Degradation and effects of pesticides on soil microbiological parameters-A review. International Journal of Agricultural Research, 1(33), 240–258.

    Google Scholar 

  • Pallud, C., Dechesne, A., Gaudet, J. P., Debouzia, D., & Grundmann, G. L. (2004). Modification of spatial distribution of 2,4-dichlorophenoxy acetic acid degrader microhabitats during growth in soil columns. Applied and Environmental Microbiology, 70, 2709–2716.

    Article  Google Scholar 

  • Park, J. H., Feng, Y., Ji, P., Voice, T. C., & Boyd, S. A. (2003). Assessment of bioavailability of soil-sorbed atrazine. Applied and Environmental Microbiology, 69, 3288–3298.

    Article  Google Scholar 

  • Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A., & Casucci, C. (2000). Effects of organic amendment and herbicide treatment on soil microbial biomass. Biology and Fertility of Soils, 32, 17–23.

    Article  Google Scholar 

  • Porto, A. L. M., Melgar, G. Z., Kasemodel, M. C., Nitschke, M. (2011). Pesticides in modern world-pesticides use and management. In M. Stoytcheva (Ed.), Biodegradation of pesticides, Chapter 20, p 407. doi:10.5772/17686

  • Prakash, N. B., & Devi, L. S. (2000). Persistence of butachlor in soils under different moisture regime. Journal of the Indian Society of Soil Science, 48, 249–256.

    Google Scholar 

  • Racke, K. D., Coats, J. R. (1990). Enhanced biodegradation of pesticides in the environment. In ACS Symposium Series (No. 426) (pp 53–67). American Chemical Society.

    Google Scholar 

  • Racke, K. D., Skidmore, M. W., Hamilton, D. J., Unsworth, J. B., Miyamoto, J., & Cohen, S. Z. (1997). Pesticide fate in tropical soil. Pure and Applied Chemistry, 69, 1349–1371.

    Article  Google Scholar 

  • Rani, S., & Sud, D. (2015). Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environment, 61(1), 36–42.

    Article  Google Scholar 

  • Rekha, S. N., & Naik, R. P. (2006). Pesticide residue in organic and conventional food-risk analysis. Journal of Chemical Health and Safety, 13, 12–19.

    Article  Google Scholar 

  • Sayler, G. S., Hooper, S. W., Layton, A. C., & King, J. M. H. (1990). Catabolic plasmids of environmental and ecological significance. Microbial Ecology, 19, 1–20.

    Article  Google Scholar 

  • Schroll, R., Becher, H. H., Dorfler, U., Gayler, S., Grundmann, S., Hartmann, H. P., et al. (2006). Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environmental Science & Technololgy, 40(10), 3305–3312.

    Article  Google Scholar 

  • Schroll, R., Brahushi, R., Dorfler, U., Kuhn, S., Fekete, J., & Munch, J. C. (2004). Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environmental Pollution, 127, 395–401.

    Article  Google Scholar 

  • Scott, C., Gunjan, P., Carol, J. H., Colin, J. J., Matthew, J. C., Matthew, C. T., et al. (2008). The enzymatic basis for pesticide bioremediation. Indian Journal of Microbiology, 48(1), 65–79.

    Article  Google Scholar 

  • Sethunathan, N., & Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinon and parathion. Canadian Journal of Microbiology, 19, 873–875.

    Article  Google Scholar 

  • Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 53, 348–351.

    Article  Google Scholar 

  • Siddique, T., Okeke, B. C., Arshad, M., & Frankenberger, W. T, Jr. (2003). Biodegradation kinetics of endosulfan by Fusarium vetricosum and a Pandoraea species. Journal of Agricultural and Food Chemistry, 51, 8015–8019.

    Article  Google Scholar 

  • Skopp, J., Jawson, M. D., & Doran, J. W. (1990). Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54(6), 1619–1625.

    Article  Google Scholar 

  • Spyrou, I. M., Karpouzas, D. G., & Menkissoglu-Spiroudi, U. (2009). Do botanical pesticides alter the structure of the soil microbial community. Microbial Ecology, 58, 715–727.

    Article  Google Scholar 

  • Suenaga, H., Mitsuoka, M., Ura, Y., Watanable, T., & Furukawa, K. (2001). Directed evolution of biphenyl dioxygenase: Emergence of enhanced degradation capacity for benzene, toluene and alkyl benzenes. Journal of Bacteriology, 183, 5441–5444.

    Article  Google Scholar 

  • Sukul, P., & Spiteller, M. (2001). Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere, 45(6), 941–947.

    Article  Google Scholar 

  • Tejada, M., García, C., Hernández, T., & Gómez, I. (2015). Response of soil microbial activity and biodiversity in soils polluted with different concentrations of Cypermethrin insecticide. Archives of Environmental Contamination and Toxicology, 69, 8–19.

    Article  Google Scholar 

  • Thom, E., Ottow, J. C. G., & Benckiser, G. (1997). Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environmental Pollution, 96, 409–414.

    Article  Google Scholar 

  • Thomas, B., & Parkins, I. B. (1995). Assimilative capacity of subsurface for the pesticides, atrazine and alachlor and nitrate. USA: FEDRIP-Data base, National Technical Information Service (NTIS).

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.

    Article  Google Scholar 

  • Topp, E. T., & Vallaeys, Soulas G. (1997). Pesticides: Microbial degradation and effects on microorganisms. In J. A. van Elsas (Ed.), Modem soil microbiology (pp. 547–573). New York: Marcel Dekker Inc.

    Google Scholar 

  • UN/DESA. (2008). Changing unsustainable patterns of consumption and production, Johannesburg plan on implementation of the world summit on sustainable development. Johannesburg, 2002 (Chapter III).

    Google Scholar 

  • Van Herwijnen, R., Van de Sande, B. F., Van der Wielen, F. W. M., Springael, D., Govers, H. A. J., & Parsons, J. R. (2003). Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiology Ecology, 46, 105–111.

    Article  Google Scholar 

  • Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A state-of-art. Reviews in Environmental Science & Biotechnology, 13(4), 429–466.

    Article  Google Scholar 

  • Verma, P., Verma, P., & Sagar, R. (2013). Variation in N mineralization and herbaceous species diversity due to sites, seasons, and N treatment in a seasonally dry tropical environment of India. Forest Ecology and Management, 297, 15–26.

    Article  Google Scholar 

  • Vollmer, M. D., Hoier, H., Hecht, H. J., Schell, U., Groning, J., Goldman, A., et al. (1998). Substrate specificity of and product formation by muconatecycloisomerases: An analysis of wild type enzyme and engineered variants. Applied and Environmental Microbiology, 64, 3290–3299.

    Google Scholar 

  • Walter-Echols, G., & Lichtenstein, E. P. (1978). Movement and metabolism of 14C-phorate in a flooded soil system. Journal of Agricultural and Food Chemistry, 26, 599–604.

    Article  Google Scholar 

  • Wang, M. C., Gong, M., Zang, H. B., Hua, X. M., Yao, J., Pang, Y. J., et al. (2006). Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. Journal of Environmental Science and Health Part B, 41, 399–413.

    Article  Google Scholar 

  • Wang, M. C., Liu, Y. H., Wang, Q., Gong, M., Hua, X. M., Pang, Y. J., et al. (2008). Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology & Biochemistry, 40(3), 778–788.

    Article  Google Scholar 

  • Wardle, D. A., & Parkinson, D. (1990). Effects of three herbicides on soil microbial biomass and activity. Plant and Soil, 122(1), 21–28.

    Article  Google Scholar 

  • Wood, T. K. (2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19, 572–578.

    Article  Google Scholar 

  • Yan, D. Z., Lui, H., & Zhou, N. Y. (2006). Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Applied and Environmental Microbiology, 72, 2283–2286.

    Article  Google Scholar 

  • You, M., & Liu, X. (2004). Biodegradation and bioremediation of pesticide pollution. Chinese Journal of Ecology, 23, 73–77.

    Google Scholar 

  • Yu, Y. L., Chen, Y. X., Luo, Y. M., Pan, X. D., He, Y. F., & Wong, M. H. (2003). Rapid degradation of butachlor in a wheat rhizosphere soil. Chemosphere, 50, 771–774.

    Article  Google Scholar 

  • Zacharia, J. T. (2011). Identity, physical and chemical properties of pesticides. In M. Stoytcheva (Ed.), Pesticides in the modern world-trends in pesticides analysis (pp. 1–18). Rijeka: In Tech.

    Google Scholar 

  • Zhang, W., Xu, J., Dong, F., Liu, X., Zhang, Y., Wu, X., et al. (2014). Effect of tetraconazole application on the soil microbial community. Environmental Science and Pollution Research, 21(13), 8323–8332.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thankful to SERB (Science and Engineering Research Board), New Delhi, India for providing fund for project entitled “Studies of agriculturally important microorganism to develop effective microbial consortium for degradation of pesticide and insecticide in soil to enhance sustainable agriculture” to carry out research on pesticide degradation .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaiswal, D.K., Verma, J.P., Yadav, J. (2017). Microbe Induced Degradation of Pesticides in Agricultural Soils. In: Singh, S. (eds) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-45156-5_8

Download citation

Publish with us

Policies and ethics