Skip to main content

Embodied Strategies in the Teaching and Learning of Science

  • Chapter
  • First Online:
Quality Teaching in Primary Science Education

Abstract

This Chapter considers how five, teachers who teach Years 4–6 in Australia and Germany utilised body-based strategies within learning sequences to facilitate the development of students’ scientific understanding. Video case studies were analysed by utilising social constructivist and social semiotic frames alongside complexity-theoretic perspectives of embodiment to investigate how gesture, role-play and distributed embodied strategies were exploited for specific pedagogical purposes. Micro-ethnographic, video-based analysis methods focussed on the role of embodiment as it was used within multimodal approaches to teach how day, night and eclipses are caused, as well as the principles of forces and levers. Fine grained analyses indicated that body-based strategies were introduced, adopted and elaborated by students and teachers as a result of their semiotic potential. Cross-case analyses showed that new information was linked to prior experience; space and time were pedagogically linked to support meaning making; and, perspective and haptic feedback were used to contextualise concepts alongside visual feedback through the use of these strategies. Implications are discussed for pedagogical principles derived from the analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams, I., & Reiss, M. J. (2012). Practical work: Its effectiveness in primary and secondary schools in England. Journal of Research in Science Teaching, 49(8), 1035–1055. doi:10.1002/tea.21036.

    Article  Google Scholar 

  • Ainsworth, S. E. (2006). DeFT: A conceptual framework for learning with multiple representations. Learning and Instruction, 16(3), 183–198.

    Article  Google Scholar 

  • Alibali, M. A., Nathan, M. J., Wolfgram, M. S., Church, R. B., Jacobs, S. A., Martinez, C. J., & Knuth, E. J. (2014). How teachers link ideas in mathematics instruction using speech and gesture: A corpus analysis. Cognition and Instruction, 32(1), 65–100.

    Article  Google Scholar 

  • Aubusson, P., Fogwill, S., Barr, R., & Perkovic, L. (1997). What happens when students do simulation-role-play in science? Research in Science Education, 27(4), 565–579. doi:10.1007/BF02461481.

    Article  Google Scholar 

  • Björkvall, A., & Karlsson, A. (2011). The materiality of discourses and the semiotics of materials: A social perspective on the meaning potentials of written texts and furniture. Semiotica, 187(1)(1), 141–165.

    Google Scholar 

  • Braund, M. (2015). Drama and learning science: An empty space? British Educational Research Journal, 41(1), 102–121. doi:10.1002/berj.3130.

    Article  Google Scholar 

  • Broaders, S., Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2007). Making children gesture brings out implicit knowledge and leads to learning. Journal of Experimental Psychology: General, 136, 539–550.

    Article  Google Scholar 

  • Carolan, J., Prain, V., & Waldrip, B. (2008). Using representations for teaching and learning in science. Teaching Science, 54(1), 18–23.

    Google Scholar 

  • Chandrasekharan, S., & Nersessian, N. J. (2011). Building cognition: The construction of external representations for discovery. Proceedings of the Cognitive Science Society, 33, 267–272.

    Google Scholar 

  • Clark, A. (1997). The dynamical challenge. Cognitive Science, 21, 461–481.

    Article  Google Scholar 

  • Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. New York: Oxford University Press.

    Book  Google Scholar 

  • Cook, S. W., & Goldin-Meadow, S. (2006). The role of gesture in learning: Do children use their hands to change their minds? Journal of Cognition and Development, 7, 211–232.

    Article  Google Scholar 

  • Crowder, E. M. (1996). Gestures at work in sense-making science talk. The Journal of the Learning Sciences, 5, 173–208.

    Article  Google Scholar 

  • Dawson, C. (1994). Science teaching in the secondary school. Melbourne: Longman.

    Google Scholar 

  • Dewey, J. (1938). Experience & education. New York: Kappa Delta Pi.

    Google Scholar 

  • diSessa, A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.

    Article  Google Scholar 

  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75, 649–672. doi:10.1002/sce.3730750606.

    Article  Google Scholar 

  • Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. In J. L. Green, G. Camilli, & P. B. Elmore (Eds.), Handbook of complementary methods in education research (pp. 177–205). Mahwah: Erlbaum.

    Google Scholar 

  • Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 199–241). London: Cambridge University Press (Reprinted in Knowledge acquisition and learning, 1993, 673–694).

    Chapter  Google Scholar 

  • Gibson, J. J. (1954). The visual perception of objective motion and sub-jective movement. Psychological Review, 61, 304–314.

    Article  Google Scholar 

  • Goldin-Meadow, S. (2010). When gesture does and does not promote learning. Language and Cognition, 2(1), 1–19. doi:10.1515/LANGCOG.2010.001.

    Article  Google Scholar 

  • Goldin-Meadow, S. (2011). Learning through gesture. WIREs Cognitive Science, 2, 595–607. doi:10.1002/wcs.132.

    Article  Google Scholar 

  • Goldman-Segall, R., & Goldman, R. (2014). Points of viewing children’s thinking. Hoboken: Psychology Press.

    Google Scholar 

  • Goodwin, C. (2003). The body in action. In J. Coupland & R. Gwyn (Eds.), Discourse, the body and identity (pp. 19–42). New York: Palgrave & Macmillan.

    Chapter  Google Scholar 

  • Hackling, M., Murcia, K., & Ibrahim-Didi, K. (2013). Teacher orchestration of multimodal resources to support the construction of an explanation in a year 4 astronomy topic. Teaching Science, 59(1), 7–15.

    Google Scholar 

  • Hegarty, M., Mayer, S., Kriz, S., & Keehner, M. (2005). The role of gestures in mental animation. Spatial Cognition and Computation, 5, 333–356.

    Article  Google Scholar 

  • Hostetter, A. B. (2011). When do gestures communicate? A meta-analysis. Psychological Bulletin, 137(2), 297–315. doi:10.1037/a0022128.

    Article  Google Scholar 

  • Hubber, P., Tytler, R., & Haslam, F. (2010). Teaching and learning about force with a representational focus: Pedagogy and teacher change. Research in Science Education, 40(1), 5–28. doi:10.1007/s11165-009-9154-9.

    Article  Google Scholar 

  • Hutchins, E. (2005). Material anchors for conceptual blends. Journal of Pragmatics, 37(10), 1555–1577. doi:10.1016/j.pragma.2004.06.008.

    Article  Google Scholar 

  • Hutchins, E., & Saeko, N. (2011). Collaborative construction of multimodal utterences. In J. Streeck, C. Goodwin, & C. LeBaron (Eds.), Multimodality and human activity: Research on human behaviour, action and communication (pp. 29–43). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 22(9), 1011–1026.

    Google Scholar 

  • Jewitt, C. (2009). An introduction to multimodality. In C. Jewitt (Ed.), The Routledge handbook of multimodal analysis (pp. 14–27). New York: Routledge.

    Google Scholar 

  • Kiverstein, J. (2012). The meaning of embodiment. Topics in Cognitive Science, 4(4), 740–758. doi:10.1111/j.1756-8765.2012.01219.x.

    Article  Google Scholar 

  • Kontra, C. E., Goldin-Meadow, S., & Beilock, S. L. (2012). Embodied learning across the life span. Topics in Cognitive Science, 4, 731–739. doi:10.1111/j.1756-8765.2012.01221.x.

    Article  Google Scholar 

  • Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Kress, G. (2010). Multimodality: A social semiotic approach to contemporary communication. London: Routledge.

    Google Scholar 

  • Kress, G. R., & Van Leeuwen, T. (2006). Reading images: The grammar of visual design. New York: Routledge.

    Google Scholar 

  • Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom. London: Continuum.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. New York: Basic Books.

    Google Scholar 

  • Larson, R., & Segal, G. (1995). Knowledge of meaning: An Introduction to semantic theory. Cambridge, MA: MIT Press.

    Google Scholar 

  • Leach, J., & Scott, P. (1995). The demands of learning science concepts: Issues of theory and practice. School Science Review, 76(277), 47–52.

    Google Scholar 

  • Lindgren, R., & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445–452.

    Article  Google Scholar 

  • Majlesi, A. R. (2015). Matching gestures – Teachers’ repetitions of students’ gestures in second language learning classrooms. Journal of Pragmatics, 76, 30–45. doi:10.1016/j.pragma.2014.11.006.

    Article  Google Scholar 

  • Maturana, H. R., & Varela, F. G. (1987). The tree of knowledge. Boston: Shambhala.

    Google Scholar 

  • McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: University of Chicago Press.

    Google Scholar 

  • Millar, R., & Abrahams, I. (2009). Practical work: Making it more effective. School Science Review, 91(334), 59–64.

    Google Scholar 

  • Nersessian, N. J. (2006). Model-based reasoning in distributed cognitive systems. Philosophy of Science, 72, 699–709.

    Article  Google Scholar 

  • Nersessian, N. J. (2009). How do engineering scientists think? Model-based simulation in biomedical engineering research laboratories. Topics in Cognitive Science, 1, 730–757. doi:10.1111/j.1756-8765.2009.01032.x.

    Article  Google Scholar 

  • Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding science. Science Education, 96(5), 849–877. doi:10.1002/sce.21026.

    Article  Google Scholar 

  • Norris, S. (2004). Analyzing multimodal interaction: A methodological framework. New York: Routledge.

    Google Scholar 

  • Osborne, R., & Freyberg, P. (1985). Learning in science: The implications of children’s science. London: Heinemann.

    Google Scholar 

  • Osbeck, L., & Nersessian, N. (2014). Situating distributed cognition. Philosophical Psychology, 27(1), 82–97. doi:10.1080/09515089.2013.829384.

    Article  Google Scholar 

  • Padalkar, S., & Ramadas, J. (2011). Designed and spontaneous gestures in elementary astronomy education. International Journal of Science Education, 33(12), 1703–1739. doi:10.1080/09500693.2010.520348.

    Article  Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ping, R. M., Goldin-Meadow, S., & Beilock, S. L. (2014). Understanding gesture: Is the listener’s motor system involved? Journal of Experimental Psychology: General, 143(1), 195–204. doi:10.1037/a0032246.

    Article  Google Scholar 

  • Plummer, J. D., Wasko, K., & Slagle, C. (2011). Children learning to explain daily celestial motion: Understanding astronomy across moving frames of reference. International Journal of Science Education, 33(14), 1963–1992.

    Article  Google Scholar 

  • Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843–1866. doi:10.1080/09500690600718294.

    Article  Google Scholar 

  • Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773.

    Article  Google Scholar 

  • Prain, V., & Tytler, R. (2013). Learning through the affordances of representation construction. In R. Tytler, V. Prain, P. Hubber, & B. Waldrip (Eds.), Constructing representations to learn in science (pp. 67–82). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Roth, W. (2000). From gesture to scientific language. Journal of Pragmatics, 32(11), 1683–1714. doi:10.1016/S0378-2166(99)00115-0.

    Article  Google Scholar 

  • Ruf, U., & Gallin, P. (1995). Ich mach das so! Wie machst du das? Das machen wir ab. Sprache und Mathematik für das 1.–3. Schuljahr. Zürich: Lehrmittelverlag des Kantons Zürich.

    Google Scholar 

  • Sakr, M., Jewitt, C., & Price, S. (2014). The semiotic work of the hands in scientific enquiry. Classroom Discourse, 5(1), 51–70. doi:10.1080/19463014.2013.868078.

    Article  Google Scholar 

  • Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20, 457–497.

    Article  Google Scholar 

  • Tytler, R., & Prain, V. (2010). A framework for re-thinking learning in science from recent cognitive science perspectives. International Journal of Science Education, 32(15), 2055–2078.

    Article  Google Scholar 

  • Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science. Rotterdam: Sense Publishers.

    Book  Google Scholar 

  • Varela, F. J., Rosch, E., & Thompson, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.

    Google Scholar 

  • Vijapurkar, J., Kawalkar, A., & Nambiar, P. (2014). What do cells really look like? An inquiry into students’ difficulties in visualising a 3-D biological cell and lessons for pedagogy. Research in Science Education, 44(2), 307–333. doi:10.1007/s11165-013-9379-5.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Waldrip, B., & Prain, V. (2012). Learning from and through representations in science. In B. J. Fraser, K. G. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 145–155). New York: Springer.

    Chapter  Google Scholar 

  • Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80. doi:10.1007/s11165-009-9157-6.

    Article  Google Scholar 

  • Woolnough, B. (Ed.). (1990). Practical science: The role and reality of practical work in school science. Maidenhead: Open University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadeeja Ibrahim-Didi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibrahim-Didi, K., Hackling, M.W., Ramseger, J., Sherriff, B. (2017). Embodied Strategies in the Teaching and Learning of Science. In: Hackling, M., Ramseger, J., Chen, HL. (eds) Quality Teaching in Primary Science Education. Springer, Cham. https://doi.org/10.1007/978-3-319-44383-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44383-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44381-2

  • Online ISBN: 978-3-319-44383-6

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics