Skip to main content

Meta-Interpretive Learning of Data Transformation Programs

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Included in the following conference series:

Abstract

Data transformation involves the manual construction of large numbers of special-purpose programs. Although typically small, such programs can be complex, involving problem decomposition, recursion, and recognition of context. Building such programs is common in commercial and academic data analytic projects and can be labour intensive and expensive, making it a suitable candidate for machine learning. In this paper, we use the meta-interpretive learning framework (MIL) to learn recursive data transformation programs from small numbers of examples. MIL is well suited to this task because it supports problem decomposition through predicate invention, learning recursive programs, learning from few examples, and learning from only positive examples. We apply Metagol, a MIL implementation, to both semi-structured and unstructured data. We conduct experiments on three real-world datasets: medical patient records, XML mondial records, and natural language taken from ecological papers. The experimental results suggest that high levels of predictive accuracy can be achieved in these tasks from small numbers of training examples, especially when learning with recursion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/metagol/metagol.

  2. 2.

    Experiments available at https://github.com/andrewcropper/ilp15-datacurate.

  3. 3.

    http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial.

  4. 4.

    http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581.

References

  1. Aitken, J.S.: Learning information extraction rules: An inductive logic programming approach. In: ECAI, pp. 355–359 (2002)

    Google Scholar 

  2. Berardi, M., Malerba, D.: Learning recursive patterns for biomedical information extraction. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 79–93. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Craven, M., Kumlien, J., et al.: Constructing biological knowledge bases by extracting information from text sources. ISMB 1999, 77–86 (1999)

    Google Scholar 

  4. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involving composable objects. In: Proceedings of the 24th International Joint Conference Artificial Intelligence (IJCAI 2015), pp. 3423–3429. IJCAI (2015)

    Google Scholar 

  5. Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS, vol. 9046, pp. 62–75. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23708-4_5

    Chapter  Google Scholar 

  6. Goadrich, M., Oliphant, L., Shavlik, J.: Learning ensembles of first-order clauses for recall-precision curves: a case study in biomedical information extraction. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 98–115. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Gulwani, S.: Automating string processing in spreadsheets using input-output examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 January 2011, pp. 317–330 (2011)

    Google Scholar 

  8. Le, V., Gulwani, S.: Flashextract: A framework for data extraction by examples. In: ACM SIGPLAN Notices, vol. 49, pp. 542–553. ACM (2014)

    Google Scholar 

  9. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.H.: Bias reformulation for one-shot function induction. In: Proceedings of the 23rd European Conference on Artificial Intelligence (ECAI 2014), pp. 525–530. IOS Press, Amsterdam (2014)

    Google Scholar 

  10. Manine, A.-P., Alphonse, E., Bessières, P.: Extraction of genic interactions with the recursive logical theory of an ontology. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 549–563. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Tamaddoni-Nezhad, A., Muggleton, S.: Stochastic refinement. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 222–237. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015). doi:10.1007/s10994-014-5471-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: a midterm report. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667. Springer, Heidelberg (1993)

    Google Scholar 

  15. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2007)

    Google Scholar 

  17. Sunderland, K.D.: The diet of some predatory arthropods in cereal crops. J. Appl. Ecol. 12(2), 507–515 (1975)

    Article  Google Scholar 

  18. Bo, W., Knoblock, C.A.: An iterative approach to synthesize data transformation programs. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI) (2015)

    Google Scholar 

  19. Bo, W., Szekely, P., Knoblock, C.A.: Learning data transformation rules through examples: preliminary results. In: Proceedings of the Ninth International Workshop on Information Integration on the Web, IIWeb 2012, pp. 8:1–8:6. ACM, New York, NY, USA (2012)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support of the BBSRC and Syngenta in funding his PhD Case studentship. The second author acknowledges the support from the IMI eTRIKS project. The third author would like to thank the Royal Academy of Engineering and Syngenta for funding his present 5 year Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Cropper .

Editor information

Editors and Affiliations

Appendices

A Appendix 1

figure a

B Appendix 2

figure b

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cropper, A., Tamaddoni-Nezhad, A., Muggleton, S.H. (2016). Meta-Interpretive Learning of Data Transformation Programs. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics