Skip to main content

Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Extraction

  • Conference paper
Inductive Logic Programming (ILP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3194))

Included in the following conference series:

Abstract

Many domains in the field of Inductive Logic Programming (ILP) involve highly unbalanced data. Our research has focused on Information Extraction (IE), a task that typically involves many more negative examples than positive examples. IE is the process of finding facts in unstructured text, such as biomedical journals, and putting those facts in an organized system. In particular, we have focused on learning to recognize instances of the protein-localization relationship in Medline abstracts. We view the problem as a machine-learning task: given positive and negative extractions from a training corpus of abstracts, learn a logical theory that performs well on a held-aside testing set. A common way to measure performance in these domains is to use precision and recall instead of simply using accuracy. We propose Gleaner, a randomized search method which collects good clauses from a broad spectrum of points along the recall dimension in recall-precision curves and employs an “at least N of these M clauses” thresholding method to combine the selected clauses. We compare Gleaner to ensembles of standard Aleph theories and find that Gleaner produces comparable testset results in a fraction of the training time needed for ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, S.: Learning Information Extraction Rules: An Inductive Logic Programming Approach. In: van Harmelen, F. (ed.) Proceedings of the 15th European Conference on Artificial Intelligence, Amsterdam (2002)

    Google Scholar 

  2. Ben Taskar, M.-F.W., Abbeeland, P., Koller, D.: Label and Link Prediction in Relational Data. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)

    Google Scholar 

  3. Blaschke, C., Hirschman, L., Valencia, A.: Information Extraction in Molecular Biology. Briefings in Bioinformatics 3(2), 154–165 (2002)

    Article  Google Scholar 

  4. Blaschke, C., Valencia, A.: Can Bibliographic Pointers for Known Biological Data be Found Automatically? Protein Interactions as a Case Study. Comparative and Functional Genomics 2, 196–206 (2001)

    Article  Google Scholar 

  5. Bradley, A.: The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  6. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney, R., Ramani, A., Wong, Y.: Comparative Experiments on Learning Information Extractors for Proteins and their Interactions. Journal of Artificial Intelligence in Medicine (2004)

    Google Scholar 

  8. Califf, M., Mooney, R.: Relational Learning of Pattern-Match Rules for Information Extraction. In: Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing, pp. 6–11. AAAI Press, Menlo Park (1998)

    Google Scholar 

  9. Cortes, C., Mohri, M.: AUC Optimization vs. Error Rate Minimization. In: Neural Information Processing Systems NIPS2003 (2003)

    Google Scholar 

  10. Craven, M., Slattery, S.: Relational Learning with Statistical Predicate Invention: Better Models for Hypertext. Machine Learning 43(1/2), 97–119 (2001)

    Article  MATH  Google Scholar 

  11. de Castro Dutra, I., Page, D., Costa, V.S., Shavlik, J.: An Empirical Evaluation of Bagging in Inductive Logic Programming. In: Twelfth International Conference on Inductive Logic Programming, Sydney, Australia, pp. 48–65 (2002)

    Google Scholar 

  12. Dietterich, T.: Machine-Learning Research: Four Current Directions. The AI Magazine 18(4), 97–136 (1998)

    Google Scholar 

  13. Eliassi-Rad, T., Shavlik, J.: A Theory-Refinement Approach to Information Extraction. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  14. Freitag, D., Kushmerick, N.: Boosted Wrapper Induction. In: AAAI/IAAI, pp. 577–583 (2000)

    Google Scholar 

  15. Hoche, S., Wrobel, S.: Relational Learning Using Constrained Confidence-Rated Boosting. In: 11th International Conference on Inductive Logic Programming, Strasbourg, France (2001)

    Google Scholar 

  16. Hu, Z.: Guidelines for Protein Name Tagging. Technical report, Georgetown University (2003)

    Google Scholar 

  17. Kauchak, D., Smarr, J., Elkan, C.: Sources of Success for Boosted Wrapper Induction. Journal of Machine Learning Research 5, 499–527 (2004)

    MathSciNet  Google Scholar 

  18. Lavrac, N., Zelezny, F., Flach, P.: RSD: Relational Subgroup Discovery through First-order Feature Construction. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 149–165. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Manning, C., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Michalski, R., Larson, J.: Inductive Inference of VL Decision Rules. In: Proceedings of the Workshop in Pattern-Directed Inference Systems (May 1977)

    Google Scholar 

  21. Popescul, L., Ungar, S.: Lawrence, and D. Pennock. Statistical Relational Learning for Document Mining. In: IEEE International Conference on Data Mining, ICDM 2003 (2003)

    Google Scholar 

  22. Porter, M.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)

    Google Scholar 

  23. Ray, S., Craven, M.: Representing Sentence Structure in Hidden Markov Models for Information Extraction. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001 (2001)

    Google Scholar 

  24. Riloff, E.: The Sundance Sentence Analyzer (1998), http://www.cs.utah.edu/projects/nlp/

  25. Rindflesch, T., Tanabe, T., Weinstein, L., Hunter, J.: Edgar: Extraction of drugs, genes and relations from the biomedical literature. In: Proceedings of the Pacific Symposium on Biocomputing (2000)

    Google Scholar 

  26. Shatkay, H., Feldman, R.: Mining the Biomedical Literature in the Genomic Era: An Overview. Journal of Computational Biology 10(6), 821–855 (2003)

    Article  Google Scholar 

  27. Srinivasan, A.: The Aleph Manual Version 4 (2003), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

  28. Srinivasan, A., King, R.: Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes. In: Muggleton, S. (ed.) Proceedings of the 6th International Workshop on Inductive Logic Programming, Stockholm University, Royal Institute of Technology, pp. 352–367 (1996)

    Google Scholar 

  29. Srinivasan, A., Muggleton, S., Sternberg, M., King, R.: Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction. Artificial Intelligence 85(1- 2), 277–299 (1996)

    Article  Google Scholar 

  30. Tang, L., Mooney, R., Melville, P.: Scaling up ILP to Large Examples: Results on Link Discovery for Counter-Terrorism. In: KDD Workshop on Multi-Relational Data Mining (2003)

    Google Scholar 

  31. Temkin, J., Gilder, M.: Extraction of Protein Interaction Information From Unstructured Text Using a Context-Free Grammar. Bioinformatics 19(16), 2046–2053 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goadrich, M., Oliphant, L., Shavlik, J. (2004). Learning Ensembles of First-Order Clauses for Recall-Precision Curves: A Case Study in Biomedical Information Extraction. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30109-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22941-4

  • Online ISBN: 978-3-540-30109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics