Skip to main content

Physarum-Based Memristors for Computer Music

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

Abstract

We present results into harnessing the memristive characteristics of Physarum polycephalum for computer music. Memristors are the recently discovered fourth fundamental passive circuit element that relates magnetic flux linkage and charge. Unlike the three established fundamental circuit elements, namely the capacitor, inductor, and resistor, the memristor is non-linear. The plasmodium of Physarum polycephalum is an amorphous unicellular organism that has been discovered to exhibit memristive qualities. We confirm findings that the protoplasmic tube of Physarum polycephalum exhibits memristive properties. We conduct a study that investigates how the memristive qualities of the organism may be used to generate musical responses to seed material. Following on, we briefly present an artefact of our research that takes the form of a piece of music composed for live performance. In the final section, we discuss our future work. Here we offer an insight as to how we plan on expanding the usability of Physarum-based memristors by stabilising the component and overcoming some of the constraints we present within this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes 37(2), 258–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamatzky, A.: If bz medium did spanning trees these would be the same trees as physarum built. Phys. Lett. A 373(10), 952–956 (2009)

    Article  MATH  Google Scholar 

  3. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)

    Google Scholar 

  4. Adamatzky, A.: Slime mould logical gates: exploring ballistic approach (2010). arXiv:1005.2301

  5. Adamatzky, A.: Slime mold solves maze in one pass, assisted by gradient of chemo-attractants. IEEE Trans. NanoBiosci. 11(2), 131–134 (2012)

    Article  Google Scholar 

  6. Adamatzky, A., Chua, L.: Memristor Networks. Springer Science & Business Media (2013)

    Google Scholar 

  7. Adamatzky, A., Jones, J.: Towards physarum robots: computing and manipulating on water surface. J. Bionic Eng. 5(4), 348–357 (2008)

    Article  Google Scholar 

  8. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  9. Adamatzky, A., Bull, L., Costello, B.D.L.: Unconventional computing 2007. Luniver Press (2007)

    Google Scholar 

  10. Adamatzky, A., Martínez, G.J., Chapa-Vergara, S.V., Asomoza-Palacio, R., Stephens, C.R.: Approximating mexican highways with slime mould. Nat. Comput. 10(3), 1195–1214 (2011)

    Article  MathSciNet  Google Scholar 

  11. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. IJUC 8(4), 319–323 (2012)

    Google Scholar 

  12. Braund, E., Miranda, E.: Music with unconventional computing: a system for physarum polycephalum sound synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds.) CMMR 2013. LNCS, vol. 8905, pp. 175–189. Springer, Heidelberg (2014)

    Google Scholar 

  13. Braund, E., Miranda, E.R.: Unconventional computing in music. In: Proceedings of the 9th Conference on Interdisciplinary Musicology—CIM14. Berlin, Germany (2014)

    Google Scholar 

  14. Braund, E., Miranda, E.: BioComputer music: generating musical responses with physarum polycephalum-based memristors. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)

    Google Scholar 

  15. Braund, E., Miranda, E.: Music with unconventional computing: granular synthesis with the biological computing substrate physarum polycephalum. In: Computer Music Multidisciplinary Research (CMMR): Music, Mind, and Embodiment. Plymouth, UK (2015)

    Google Scholar 

  16. Braund, E., Miranda, E.: Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 15–26. Springer, Heidelberg (2015)

    Google Scholar 

  17. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  18. Doornbusch, P.: Computer sound synthesis in 1951: the music of CSIRAC. Comput. Music J. 28(1), 10–25 (2004)

    Article  Google Scholar 

  19. Evangelidis, V., Tsompanas, M.A., Sirakoulis, G.C., Adamatzky, A.: Slime mould imitates development of roman roads in the balkans. J. Archaeol. Sci.: Rep. 2, 264–281 (2015)

    Google Scholar 

  20. Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 1–8 (2013)

    Google Scholar 

  21. Gale, E., de Lacy Costello, B., Adamatzky, A.: Emergent spiking in non-ideal memristor networks. Microelectron. J. 45(11), 1401–1415 (2014)

    Google Scholar 

  22. Gale, E., Matthews, O., de Lacy Costello, B., Adamatzky, A.: Beyond markov chains, towards adaptive memristor network-based music generation. IJUC 10(3), 181–197 (2014)

    Google Scholar 

  23. Grimnes, S., Lütken, C.A., Martinsen, O.G.: Memristive properties of electro-osmosis in human sweat ducts. In: World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany, pp. 696–698. Springer (2009)

    Google Scholar 

  24. Johnsen, G.K.: An introduction to the memristor—a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 3(1), 20–28 (2012)

    Google Scholar 

  25. Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)

    Article  Google Scholar 

  26. Miranda, E.R.: Harnessing the intelligence of physarum polycephalum for unconventional computing-aided musical composition. IJUC 10(3), 251–268 (2014)

    Google Scholar 

  27. Miranda, E.R., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)

    Article  Google Scholar 

  28. Miranda, E., Braund, E.: Experiments in musical biocomputing: towards new kinds of processors for audio and music. In: A. Adamatzky (ed.) Advances in Unconventional Computing. Springer (In Press)

    Google Scholar 

  29. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 21,926 (2009)

    Google Scholar 

  30. Ridgway, E., Durham, A.: Oscillations of calcium ion concentrations in physarum polycephalum. J. Cell Biol. 69(1), 223–226 (1976)

    Article  Google Scholar 

  31. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  32. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot control with biological cells. Biosystems 87(2), 215–223 (2007)

    Article  Google Scholar 

  33. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. J. Math. 58(345–363), 5 (1936)

    MATH  Google Scholar 

  34. Volkov, A., Reedus, J., Mitchell, C.M., Tucket, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9(4), e29,056 (2014)

    Google Scholar 

  35. Von Neumann, J.: First draft of a report on the edvac. IEEE Ann. Hist. Comput. 15(4), 27–75 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Braund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braund, E., Sparrow, R., Miranda, E. (2016). Physarum-Based Memristors for Computer Music. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics