Skip to main content

The Propagation Depth of Local Consistency

  • Conference paper
Principles and Practice of Constraint Programming (CP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8656))

Abstract

We establish optimal bounds on the number of nested propagation steps in k-consistency tests. It is known that local consistency algorithms such as arc-, path- and k-consistency are not efficiently parallelizable. Their inherent sequential nature is caused by long chains of nested propagation steps, which cannot be executed in parallel. This motivates the question “What is the minimum number of nested propagation steps that have to be performed by k-consistency algorithms on (binary) constraint networks with n variables and domain size d?”

It was known before that 2-consistency requires Ω(nd) and 3-consistency requires Ω(n 2) sequential propagation steps. We answer the question exhaustively for every k ≥ 2: there are binary constraint networks where any k-consistency procedure has to perform Ω(n k − 1 d k − 1) nested propagation steps before local inconsistencies were detected. This bound is tight, because the overall number of propagation steps performed by k-consistency is at most n k − 1 d k − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Berkholz, C.: The Propagation Depth of Local Consistency. ArXiv e-prints (2014), http://arxiv.org/abs/1406.4679

  3. Berkholz, C.: Lower bounds for existential pebble games and k-consistency tests. Logical Methods in Computer Science 9(4) (2013), http://arxiv.org/abs/1205.0679

  4. Berkholz, C., Verbitsky, O.: On the speed of constraint propagation and the time complexity of arc consistency testing. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 159–170. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41(1), 89–95 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dechter, R., Pearl, J.: A problem simplification approach that generates heuristics for constraint-satisfaction problems. Tech. rep., Cognitive Systems Laboratory, Computer Science Department, University of California, Los Angeles (1985)

    Google Scholar 

  7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21, 958–966 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 302–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction networks. Artificial Intelligence 45(3), 275–286 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)

    Article  MathSciNet  Google Scholar 

  13. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: Proc AAAI/IAAI 2000, pp. 175–181 (2000)

    Google Scholar 

  14. Ladkin, P.B., Maddux, R.D.: On binary constraint problems. J. ACM 41(3), 435–469 (1994), http://doi.acm.org/10.1145/176584.176585

    Article  MATH  MathSciNet  Google Scholar 

  15. Samal, A., Henderson, T.: Parallel consistent labeling algorithms. International Journal of Parallel Programming 16, 341–364 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Susswein, S., Henderson, T., Zachary, J., Hansen, C., Hinker, P., Marsden, G.: Parallel path consistency. International Journal of Parallel Programming 20(6), 453–473 (1991), http://dx.doi.org/10.1007/BF01547895

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Berkholz, C. (2014). The Propagation Depth of Local Consistency. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics