Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

Abstract

Refutation proofs can be viewed as a special case of constraint propagation, which is a fundamental technique in solving constraint-satisfaction problems. The generalization lifts, in a uniform way, the concept of refutation from Boolean satisfiability problems to general constraint-satisfaction problems. On the one hand, this enables us to study and characterize basic concepts, such as refutation width, using tools from finite-model theory. On the other hand, this enables us to introduce new proof systems, based on representation classes, that have not been considered up to this point. We consider ordered binary decision diagrams (OBDDs) as a case study of a representation class for refutations, and compare their strength to well-known proof systems, such as resolution, the Gaussian calculus, cutting planes, and Frege systems of bounded alternation-depth. In particular, we show that refutations by ODBBs polynomially simulate resolution and can be exponentially stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. In: 18th IEEE Conference on Computational Complexity, pp. 239–247 (2003)

    Google Scholar 

  2. Ajtai, M.: The complexity of the pigeonhole principle. In: 29th Annual IEEE Symposium on Foundations of Computer Science, pp. 346–355 (1988)

    Google Scholar 

  3. Alekhnovich, M., Razborov, A.: Satisfiability, branch-width and Tseitin tautologies. In: 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 593–603 (2002)

    Google Scholar 

  4. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beame, P., Impagliazzo, R., Krajícek, J., Pitassi, T., Pudlák, P., Woods, A.: Exponential lower bounds for the pigeonhole principle. In: 24th Annual ACM Symposium on the Theory of Computing, pp. 200–220 (1992)

    Google Scholar 

  6. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonet, M.L., Pitassi, T., Raz, R.: Lower bounds for cutting planes proofs with small coefficients. Journal of Symbolic Logic 62(3), 708–728 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal of Computing 29(6), 1939–1967 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  Google Scholar 

  10. Ben-Sasson, E.: Hard examples for bounded depth frege. In: 34th Annual ACM Symposium on the Theory of Computing, pp. 563–572 (2002)

    Google Scholar 

  11. Ben-Sasson, E., Impagliazzo, R.: Random CNF’s are hard for the polynomial calculus. In: 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 415–421 (1999)

    Google Scholar 

  12. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow–resolution made simple. Journal of the ACM 48(2), 149–169 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18, 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen, J. (ed.) Hankbook of Theoretical Computer Science, vol. 2, pp. 194–242. Elsevier Science Publishers, Amsterdam (1990)

    Google Scholar 

  15. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44, 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dechter, R.: From local to global consistency. Artificial Intelligence 55(1), 87–107 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  18. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence 34, 1–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dechter, R., Rish, I.: Directional Resolution: The Davis-Putnam Procedure, Revisited. In: 4th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 134–145. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  21. Dechter, R., van Beek, P.: Local and global relational consistency. Theoretical Computer Science 173(1), 283–308 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM 21(11), 958–966 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the Association for Computing Machinery 29(1), 24–32 (1982)

    MATH  MathSciNet  Google Scholar 

  24. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Proc. AAAI 1990, pp. 4–9 (1990)

    Google Scholar 

  25. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal of Computing 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposition constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hell, P., Nešetřil, J.: The core of a graph. Discrete Mathematics 109, 117–126 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Impagliazzo, R., Pitassi, T., Urquhart, A.: Upper and lower bounds for tree-like cutting planes proofs. In: 9th IEEE Symposium on Logic in Computer Science, pp. 220–228 (1994)

    Google Scholar 

  30. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Krajícek, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic 62, 457–486 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of Datalog: tools and a case study. Journal of Computer and System Sciences 51, 110–134 (1995)

    Article  MathSciNet  Google Scholar 

  33. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Sciences 61(2), 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction. In: 17th National Conference on Artificial Intelligence, pp. 175–181 (2000)

    Google Scholar 

  35. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  36. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. To appear in Proceedings 7th International Conference on Theory and Applications of Satisfiability Testing (2004)

    Google Scholar 

  38. Tseitin, G.S.: On the complexity of derivation in propositional calculus, pp. 115–125. Consultants Bureau (1968)

    Google Scholar 

  39. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atserias, A., Kolaitis, P.G., Vardi, M.Y. (2004). Constraint Propagation as a Proof System. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics