Skip to main content

Gentzen’s Consistency Proof in Context

  • Chapter
Gentzen's Centenary

Abstract

Gentzen’s celebrated consistency proof—or proofs, to distinguish the different variations he gave1—of Peano Arithmetic in terms of transfinite induction up to the ordinal2 \(\varepsilon _{0}\) can be considered as the birth of modern proof theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf., e.g., [13, 87, 105], and [114] as well as [97] in this volume.

  2. 2.

    For the ordinal \(\varepsilon _{0}\) see, for instance, [58] in this volume.

  3. 3.

    See, for instance, [90] in this volume.

  4. 4.

    See, for instance, [15] and [87] in this volume.

  5. 5.

    For the development of Hilbert’s programme(s), cf. e.g., [98].

  6. 6.

    See Fraenkel [28, p. 154]:

    This is the point of view of Hilbert, who, therefore, picks up himself the methodical starting point of his intuitionist opponents—but for the purpose to deny their thesis; one could almost characterize him as an intuitionist.

    (German original: “Dies etwa ist der Standpunkt Hilberts, der somit den methodischen Ausgangspunkt seiner intuitionistischen Gegner — allerdings zum Zweck der Bestreitung ihrer Thesen — selbst aufnimmt; man könnte ihn geradezu als Intuitionisten bezeichnen.”) Van Dalen adds to this citation [112, p. 309]: “Although the inner circle of experts in the area (e.g. Bernays, Weyl, von Neumann, Brouwer) had reached the same conclusion some time before, it was Fraenkel who put it on record.” See also footnote 18.

  7. 7.

    German original [32, p. 6]: “Die folgerichtigste Art der Abgrenzung ist die durch den ‘intuitionistischen’ Standpunkt […] gegebene.”

  8. 8.

    We may leave it open here whether Hilbert himself was advocating such a conservativity. The issue of conservativity can be considered, of course, without reference to historic figures.

  9. 9.

    It is reported in the Schütte school that this was also immediately recognized in Göttingen.

  10. 10.

    But one may note the puzzling lack of understanding of Russell, expressed in a letter to Leon Henkin of 1 April 1963, cf. [18, p. 89ff].

  11. 11.

    Hilbert and Bernays [55, p. VII]. German original: “Jenes Ergebnis zeigt in der Tat auch nur, daß man für die weitergehenden Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer schäferen Weise ausnutzen muß, […].”

  12. 12.

    German original [1, p.1f]: “Besonders interessiert hat mich der neue meta-mathematische Standpunkt, den Sie jetzt einnehmen und der durch die Gödelsche Arbeit veranlaßt worden ist.” The letter was written after Ackermann visited Göttingen, but didn’t meet Hilbert and spoke only with Arnold Schmidt, who informed him about “everything” going on in Göttingen.

  13. 13.

    Detlefsen, [19] in this volume, however, points out that there are some fundamental differences between Gentzen’s own philosophical view and Hilbert’s view.

  14. 14.

    In German: “Überschreitung des bisherigen methodischen Standpunkts der Beweistheorie”.

  15. 15.

    German original, [38, p. 94]:

    1. 4.

      Wie also erweitern? (Erweiterung nötig.) Drei Wege \([\![\) sind\(]\!]\) bisher bekannt:

      1. 1.

        Höhere Typen von Funktionen (Funktionen \([\![\) von\(]\!]\) Funktionen von Zahlen, etc.)

      2. 2.

        Modalitätslogischer Weg (Einführung einer Absurdität auf Allsätze angewendet und eines “Folgerns”).

      3. 3.

        Transfinite Induktion, d.h., es wird der Schluß durch Induktion für gewisse konkret definierte Ordinalzahlen der zweiten Klasse hinzugefügt.

  16. 16.

    See, for instance, [75] in this volume.

  17. 17.

    German original: “Ein solcher Widerspruchsfreiheitsbeweis wäre nun wieder ein mathematischer Beweis, in dem gewisse Schlüsse und Begriffsbildungen verwendet würden. Diese müssen als sicher (insbesondere als widerspruchsfrei) bereits vorausgesetzt werden. Ein ‘absoluter Widerspruchsfreiheitsbeweis’ ist also nicht möglich. Ein Widerpruchsfreiheitsbeweis kann lediglich die Richtigkeit gewisser Schlußweisen auf die Richtigkeit anderer Schlußwiesen zurückführen. Man wird also verlangen müssen, daß in einem Widerspruchsfreiheitsbeweis nur solche Schlußweisen der Theorie, deren Widerspruchsfreiheit man beweist, als erheblich sicherer gelten können.”

    Similarly in [32]:

    In order to carry out a consistency proof, we naturally already require certain techniques of proof whose reliability must be presupposed and can no longer be justified along these lines. An absolute consistency proof, i.e., a proof which is free from presuppositions is of course impossible. [102, p. 237].

    German original: “Um einen Widerspruchsfreiheitsbeweis zu führen, braucht man natürlich bereits gewisse mathematische Beweismittel, deren Unbedenklichkeit man voraussetzen muß und auf diesem Wege schließlich nicht weiter begründen kann. Ein absoluter, d. h. voraussetzungsloser Widerspruchsfreiheitsbeweis ist selbstverständlich unmöglich.”

  18. 18.

    “Concerning the use of the word intuitionistic […], it should be noted that according to Bernays [[11, p. 502]], the prevailing view in the Hilbert school at the beginning of the 1930s equated finitism with intuitionism.” [24, p. 117]. See also footnote 6 above.

  19. 19.

    This paper was submitted in 1933, but withdrawn by Gentzen when he became known about Gödel’s paper. An English translation appeared in print in 1969, [102, #2], the German version of the Galley proofs, kept by Paul Bernays, was published only in 1974.

  20. 20.

    German original [33, p. 131]: “Wenn man die intuitionistische Arithmetik als widerspruchsfrei hinnimmt, so ist […] auch die Widerspruchsfreiheit der klassischen Arithmetik gesichert.”

  21. 21.

    An informal presentation of the main idea of the proof is given, for instance, by Takeuti in [120, p. 128ff].

  22. 22.

    A well-known proof theorists presumably heard the second joke from Kreisel but confused a “y” with an “i” attributing it—with reference to Kreisel—to “un grand mathématicien français” [35, p. 520, fn. 14]; this confusion is confirmed in [36, pp. 9 and 33] where André Weil is mentioned by name (without reference to Kreisel).

  23. 23.

    Smullyan [100, p. 56] illustrates very well this point in connection with Gödel’s (first) incompleteness result, stressing that Gödel, by using ω-consistency, makes a much weaker assumption than correctness. The pointlessness of consisteny proofs by semantic methods was well stated by Shoenfield [96, p. 214]:

    The consistency proof for P by means of the standard model […] does not even increase our understanding of P, since nothing goes into it which we did not put into P in the first place.

  24. 24.

    For sure, Weyl will have known exactly what’s going on here, and probably also classified his remark only as a joke.

  25. 25.

    See [84], cited in [98, p. 7].

  26. 26.

    See, for instance, [10, p. 203]. This separation might have been suggested by Brouwer to Hilbert in 1909, cf. [112, p. 302]. Sieg [98, p. 27] writes: “Hilbert claims in [[50]], that Poincaré arrived at ‘his mistaken conviction by not distinguishing these two methods of induction, which are of entirely different kinds’ and feels that ‘[u]nder these circumstances Poincaré had to reject my theory, which, incidentally, existed at that time only in its completely inadequate early stages’.”

  27. 27.

    It is defensible that Hilbert took Poincaré’s critics more serious than, for instance, Brouwer’s, cf. [61, 62]; but since Poincaré died already in 1912, Hilbert had lost him as discussion partner at the time his programme was worked out.

  28. 28.

    This supplement, added to the second edition of [53] and published in 1970, also presents a consistency proof of Kalmár, based on an unpublished manuscript of 1938.

  29. 29.

    Cf. Bernays in [53, p. VII]:

    Currently, W. Ackermann is developing his earlier consistency proof—by use of a sort of transfinite induction as used by Gentzen—in a way that it obtains validity for the full numbertheoretic formalism.

    German original: “Gegenwärtig ist W. Ackermann dabei, seinen früheren (…) Widerspruchsfreiheitsbeweis durch Anwendung der transfiniten Induktion in der Art, wie sie von Gentzen benutzt wird, so auszugestalten, daß er für den vollen zahlentheoretischen Formalismus Gültigkeit erhält.”

    Von Plato writes in [115, end of I.4.10]: “A second proof of Gentzen’s result was given by an unwilling Wilhelm Ackermann, after repeated pleadings on the part of Bernays.”

  30. 30.

    In the continuation of the citation, the mentioned fine structure is illustrated by the result about provably total functions of PA which one can obtain from Gentzen’s work.

  31. 31.

    See, for instance, the talk on transfinite numbers given by Poincaré in Göttingen in 1909 in the presence of Hilbert, included in [85] and translated by Ewald in [22, 22.G] (reprinted in [62]).

  32. 32.

    Szabo [102, p. viii] refers to the memories of a friend of Gentzen in the prison: “He once confided in me that he was really quite contented since now he had at last time to think about a consistency proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a proof.”

  33. 33.

    Here, one can turn Hilbert’s programme upside down and use interpretations of new intuitionistic principles to justify them on classical grounds; see, for instance, [27, p. 340]. I also remember a proof theorist, making good use of such principles, but calling them—trained in classical Mathematics and therefore believing in the standard notion of mathematical truth—“totally wrong” (as translation of the German “grob falsch”).

  34. 34.

    Kreisel, in [67, p. 344], sketches also an extension of “Gödel’s old translation” of a system for classical Analysis to a specific intuitionistic reformulation of Analysis, involving the general Comprehension Axiom, which “provides an intuitionistic consistency proof of classical analysis”. He himself classifies this result as “philosophically […] not significant at all”, except for “a reduction to intuitionistic methods of proof”—which he judges a “technical” property. In the Discussion of this proof he reminds the reader to look for alternatives:

    Quite naively, this easy proof in no way reduces the interest of a more detailed proof theoretic reduction […]; just as Gödel’s original intuitionistic consistency proof for classical arithmetic Z did not make Gentzen’s reduction superfluous.

  35. 35.

    In a discussion of these proofs, Kreisel writes [67, p. 349, footnote 16]: “[I]n terms of consistency proofs, Tait’s argument would only have proved the consistency of classical analysis in third order arithmetic!”

  36. 36.

    I remember a proof-theorist classifying such a normalization proof as simply “circular.”

  37. 37.

    The worst-case scenario was experienced by Martin-Löf, when he realized that the normalization proof of his first (inconsistent) type theory was carried out in an inconsistent metatheory (see Setzer’s contribution in this volume [95]).

  38. 38.

    For a thorough discussion of Spector’s proof see [26] in this volume. Oliva and Powell [80], also in this volume, discuss some spin-offs we can get from proof-theoretic analyses in the neighborhood of Spector’s approach.

  39. 39.

    See [81, 82, 94, 108] for comprehensive presentations of the background of the respective developments.

  40. 40.

    See, for instance, [14] and [57] in this volume.

  41. 41.

    This was exemplified, in particular, by Kripke-Platek set theory, cf. e.g., [56, 81].

  42. 42.

    In the further course of the discussion, Feferman expresses some doubts about current advances in ordinal analysis with respect to the given rationale [23, p. 80]:

    Even if one succeeds in reducing the system \((\Pi _{2}^{1}\mbox{ -}\mathsf{CA}) \pm \mathsf{BI}\) to a constructive system (whether evidently so or not), one can hardly expect that doing so will appreciably increase one’s belief in its consistency (if one has any doubts about that in the first place) in view of the difficulty of checking the extremely complicated technical work needed for its ordinal analysis.

  43. 43.

    This is, admittedly, in sharp contrast to the early times of axiomatic set theory, where Poincaré, for instance, expressed his doubts about Zermelo’s axiomatization of set theory in the following words, cf. [43, p. 540]:

    But even though he has closed his sheepfold carefully, I am not sure that he has not set the wolf to mind the sheep.

  44. 44.

    Of course, this prediction is embedded in a thorough discussion which gives arguments for this claim. But one may note that Woodin speaks here about the discovery not about the existence of an inconsistency.

  45. 45.

    The argument for the intuitive model of ZF is compared with the situation for Quine’s New Foundation where the lack of such an intuitive model gives reason to look for a (relative) consistency proof.

  46. 46.

    Conveyed by Girard in French [35, p. 525]: “Les doutes quant à la cohérence sont plus douteux que la cohérence elle-même.”

  47. 47.

    German original: “Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden.” cited and translated in [20, p. 97].

  48. 48.

    See, for instance, [12]: “Historically speaking, it is of course quite untrue that mathematics is free from contradiction” and later “[Contradictions] occur in the daily work of every mathematician, beginner or master of his craft, as the result of more or less easily detected mistakes, […]”

  49. 49.

    This example is taken from [20, p. 59].

  50. 50.

    German original: “Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die ‘Elemente’ von M genannt werden) zu einem Ganzen.” [16, p. 282]. The translation is from [44, p. 33].

  51. 51.

    In German: “consistente Vielheiten,” letter to Hilbert from May 5th, 1899, [17, letter 160]; as “finished set” (“fertige Menge”) already in a letter from December 2nd, 1897, [17, p. 390].

  52. 52.

    In [47] he writes, [113, p. 131]:

    G. Cantor sensed the contradiction just mentioned and expressed this awareness by differentiating between “consistent” and “inconsistent” sets. But, since in my opinion he does not provide a precise criterion for this distinction, I must characterize his conception on this point as one that still leaves latitude for subjective judgment and therefore affords no objective certainty.

    In German (cited in [17, S. 436]): “G. Cantor hat den genannten Widerspruch empfunden und diesem Empfinden dadurch Ausdruck verliehen, daß er ‘konsistente’ und ‘nichtkonsistente’ Mengen unterscheidet. Indem er aber meiner Meinung nach für diese Unterscheidung kein scharfes Kriterium aufstellt, muß ich seine Auffassung über diesen Punkt als eine solche bezeichnen, die dem subjektiven Ermessen noch Spielraum läßt und daher keine objektive Sicherheit gewährt.” An even stronger statement against Cantor’s approach can be found in a lecture note from 1917, [48], cf. [59, 60].

  53. 53.

    Although this axiomatization has the flaw that its justification is extrinsic where philosophers would prefer to have an intrinsic one, cf. e.g., the discussion in [73].

  54. 54.

    One may note that Cantor’s criterion for a “finished set” also requires a consistency proof, but somehow locally for the particular construction only. However, as far as we know, Cantor only took note of the criterion in the negative cases, to dismiss a set construction when it was shown to be inconsistent.

  55. 55.

    For instance, Aczel’s Frege Structures, [3].

  56. 56.

    The situation becomes philosophically even more doubtful when such a justification depends, in addition, on the approval of a “Master”. In this respect, Lorenzen complained about Brouwer [70]:

    Unfortunately, the explanation which Brouwer himself offers for this phenomenon [that some Mathematicians consider the ‘tertium non datur’ as unreliable] is an esoteric issue: only one who listened the Master himself understands him.

    (German original: “Unglücklicherweise ist die Erklärung, die Brouwer selbst für dieses Phänomen anbietet, eine esoterische Angelegenheit: nur, wer den Meister selber hörte, versteht ihn.”)

  57. 57.

    A complementary view on this issue is given by Setzer [95] in this volume.

  58. 58.

    This claim can be substantiated by the fact that it was not possible for any of the systems to modify it in a way that the original aims of the authors would be preserved.

  59. 59.

    A thorough discussion of this issue can be found in [25].

  60. 60.

    German original [32, p. 6]: “So scheint es mir nicht ganz ausgeschlossen, daß auch in der klassischen Analysis mögliche Widersprüche verborgen sein können. Daß man bis jetzt keine entdeckt hat, besagt nicht viel, wenn man bedenkt, daß der Mathematiker in praxi immer mit einem verhältnismäßig geringen Teil der an sich logisch möglichen mannigfachen Komplizierungen der Begriffsbildung auskommt.”

  61. 61.

    German original [32, p. 7]: “doch steht der praktisch vor allem wichtige Beweis für die Analysis noch aus.”

  62. 62.

    Cf, e.g., [83] and [91] in this volume.

References

  1. W. Ackermann, Letter to David Hilbert, August 23rd, 1933, Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 1.

    Google Scholar 

  2. W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie. Math. Ann. 117, 162–194 (1940)

    Article  MathSciNet  Google Scholar 

  3. P. Aczel, Frege structures and the notion of proposition, truth and set, in The Kleene Symposium, ed. by J. Barwise, H. Keisler, K. Kunen (North-Holland, Amsterdam, 1980), pp. 31–59

    Chapter  Google Scholar 

  4. T. Arai, Epsilon substitution method for \(\text{ID}_{1}(\Pi _{1}^{0} \vee \Sigma _{1}^{0})\). Ann. Pure Appl. Log. 121, 163–208 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Arai, Proof theory for theories of ordinals I: recursively Mahlo ordinals. Ann. Pure Appl. Log. 122, 1–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Arai, Proof theory for theories of ordinals II:\(\Pi _{3}\)-reflection. Ann. Pure Appl. Log. 129, 39–92 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Arai, Proof theory for theories of ordinals III: \(\Pi _{N}\)-reflection, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  8. J. Avigad, S. Feferman, Gödel’s functional (“Dialectica”) interpretation, in Handbook of Proof Theory, ed. by S.R. Buss (North-Holland, Amsterdam, 1998), pp. 337–405

    Chapter  Google Scholar 

  9. P. Benacerraf, H. Putnam (eds.), Philosophy of Mathematics. Selected Readings (Prentice Hall, Englewood Cliffs, 1964) (2nd edn., Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  10. P. Bernays, Hilberts Untersuchungen über die Grundlagen der Arithmetik, in David Hilbert: Gesammelte Abhandlungen, vol. 3, [51] (Springer, Berlin, 1935), pp. 196–216

    Google Scholar 

  11. P. Bernays, Hilbert, David, in Encyclopedia of Philosophy, vol. 3, ed. by P. Edwards (Macmillan, New York, 1967), pp. 496–504

    Google Scholar 

  12. N. Bourbaki, Foundations of mathematics for the working mathematician. J. Symb. Log. 14(1), 1–8 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Buchholz, On Gentzen’s first consistency proof for arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  14. W. Buchholz, S. Feferman, W. Pohlers, W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis. Lecture Notes in Mathematics, vol. 897 (Springer, Berlin, 1981)

    Google Scholar 

  15. S. Buss, Cut elimination In Situ, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  16. G. Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. by E. Zermelo (Springer, Berlin, 1932)

    Google Scholar 

  17. G. Cantor, Briefe, ed. by H. Meschkowski, W. Nilson (Springer, Berlin, 1991)

    Google Scholar 

  18. J.W. Dawson Jr., The reception of Gödel’s incompleteness theorems, in Gödel’s Theorem in Focus, ed. by S.G. Shanker (Routledge, London, 1988), pp. 74–95

    Google Scholar 

  19. M. Detlefsen, Gentzen’s anti-formalist views, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  20. H.-D. Ebbinghaus et al., Numbers. Graduate Texts in Mathematics (Springer, Berlin, 1991)

    Google Scholar 

  21. L. Euler, Vollständige Anleitung zur Algebra. (Akademie der Wissenschaften, St. Petersburg, 1770). Two volumes.

    Google Scholar 

  22. W.B. Ewald (ed.), From Kant to Hilbert. (Oxford University Press, Oxford, 1996). Two volumes.

    Google Scholar 

  23. S. Feferman, Does reductive proof theory have a viable rationale? Erkenntnis 53, 63–96 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Feferman, Lieber Herr Bernays! Lieber Herr Gödel! Gödel on finitism, constructivity, and Hilbert’s program, in Kurt Gödel and the Foundations of Mathematics, ed. by M. Baaz et al. (Cambridge University Press, Cambridge, 2011), pp. 111–133

    Chapter  Google Scholar 

  25. S. Feferman, H.M. Friedman, P. Maddy, J.R. Steel, Does mathematics need new axioms? Bull. Symb. Log. 6(4), 401–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Ferreira, Spector’s proof of the consistency of analysis, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  27. F. Ferreira, A. Nunes, Bounded modified realizability. J. Symb. Log. 71(1), 329–346 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Fraenkel, Zehn Vorlesungen über die Grundlegung der Mengenlehre. Wissenschaft und Hypothese, vol. XXXI (Teubner, Leipzig, 1927). Reprint (Wissenschaftliche Buchgesellschaft, Darmstadt, 1972)

    Google Scholar 

  29. G. Frege, Grundgesetze der Arithmetik, vol. 1 (Hermann Pohle, Jena, 1893). Reprinted, together with vol. 2 (Olms, Hildesheim 1966)

    Google Scholar 

  30. G. Frege, Grundgesetze der Arithmetik, vol. 2 (Hermann Pohle, Jena, 1903). Reprinted, together with vol. 1 (Olms, Hildesheim 1966)

    Google Scholar 

  31. G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565 (1936). English translation in [102, #4]

    Google Scholar 

  32. G. Gentzen, Die gegenwärtige Lage in der mathematischen Grundlagenforschung. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Neue Folge 4, 5–18 (1938); also in Dtsch. Math. 3, 255–268 (1939). English translation in [102, #7]

    Google Scholar 

  33. G. Gentzen, Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik. Archiv für mathematische Logik und Grundlagenforschung 16, 119–132 (1974). Written in 1933, but withdrawn from publication after the appearence of [37]. English translation in [102, #2]

    Google Scholar 

  34. J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur, PhD thesis, Université Paris 7, 1972

    Google Scholar 

  35. J.-Y. Girard, Du pourquoi au comment: la théorie de la démonstration de 1950 à nos jours, in Development of Mathematics, 1950–2000, ed. by J.-P. Pier (Birkhäuser, Basel, 2000),pp. 515–545

    Google Scholar 

  36. J.-Y. Girard, The Blind Spot. (European Mathematical Society, Zürich, 2011)

    Google Scholar 

  37. K. Gödel, Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933). Translated as On intuitionistic arithmetic and number theory in [113], reprinted in [40] (1933e), pp. 287–295

    Google Scholar 

  38. K. Gödel, Vortrag bei Zilsel/Lecture at Zilsel’s, 1938. Published in [42] (*1938a), pp. 86–113

    Google Scholar 

  39. K. Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958). Reprinted with English translation in [41], pp. 241–251

    Google Scholar 

  40. K. Gödel, Collected Works, vol. I, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1986)

    Google Scholar 

  41. K. Gödel, Collected Works, vol. II, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1990)

    Google Scholar 

  42. K. Gödel, Collected Works: Unpublished Essays and Lectures, vol. III, ed. by S. Feferman et al. (Oxford University Press, Oxford, 1995)

    Google Scholar 

  43. J. Gray, Henri Poincaré (Princeton University Press, Princeton, 2013)

    MATH  Google Scholar 

  44. M. Hallett. Cantorian Set Theory and Limitation of Size. Oxford Logic Guides, vol. 10 (Oxford University Press, Oxford, 1984)

    Google Scholar 

  45. D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der königl. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, pages 53–297, 1900. English translation: [46]

    Google Scholar 

  46. D. Hilbert, Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900. Bull. Am. Math. Soc. 8, 437–479 (1902). English translation of [45]

    Google Scholar 

  47. D. Hilbert, Über die Grundlagen der Logik und der Arithmetik, in Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, ed. by A. Krazer (Teubner, Leipzig, 1905), pp. 174–185

    Google Scholar 

  48. D. Hilbert, Mengenlehre. Lecture Notes Summer term 1917, (Library of the Mathematical Institute, University of Göttingen), 1917

    Google Scholar 

  49. D. Hilbert, Neubegründung der Mathematik: Erste Mitteilung. Abhandlungen aus dem Seminar der Hamburgischen Universität 1, 157–177 (1922)

    Article  MATH  MathSciNet  Google Scholar 

  50. D. Hilbert, Die Grundlagen der Mathematik. Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität 6(1/2), 65–85 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Hilbert, Gesammelte Abhandlungen. Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte, vol. III (Springer, Berlin, 1935). 2nd edition 1970

    Google Scholar 

  52. D. Hilbert, P. Bernays, Grundlagen der Mathematik I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 40 (Springer, Berlin, 1934). 2nd edn. 1968. Partly translated into English in the bilingual edition [55]

    Google Scholar 

  53. D. Hilbert, P. Bernays, Grundlagen der Mathematik II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 50 (Springer, Berlin, 1939). 2nd edition [54]

    Google Scholar 

  54. D. Hilbert, P. Bernays, Grundlagen der Mathematik II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 50, 2nd edn. (Springer, Berlin, 1970). 1st edition [53].

    Google Scholar 

  55. D. Hilbert, P. Bernays, Grundlagen der Mathematik I (Foundations of Mathematics I). (College Publications, London, 2011). Bilingual edition of Prefaces and §§1–2 of [52]

    Google Scholar 

  56. G. Jäger, Theories for Admissible Sets: A Unifying Approach to Proof Theory. (Bibliopolis, Naples, 1986)

    Google Scholar 

  57. G. Jäger, D. Probst, A proof-theoretic analysis of theories for stratified inductive definitions, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  58. H. Jervell, Climbing mount \(\varepsilon _{0}\), in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  59. R. Kahle, David Hilbert über Paradoxien. Departamento de Matemática, Universidade de Coimbra. Preprint Number 06-17(2006)

    Google Scholar 

  60. R. Kahle, The universal set—A (never fought) battle between philosophy and mathematics, in Lógica e Filosofia da Ciência, ed. by O. Pombo, Á. Nepomuceno. Colecção Documenta, vol. 2 (Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, 2009), pp. 53–65

    Google Scholar 

  61. R. Kahle, Hilbert and Poincaré and the paradoxes, in Poincaré’s Philosophy of Mathematics: Intuition, Experience, Creativity, ed. by H. Tahiri. Cadernos de Filosofia das Ciências, vol. 11 (Centro de Filosofia das Ciências da Universidade de Lisboa, Lisboa, 2011), pages 79–93

    Google Scholar 

  62. R. Kahle, Poincaré in Göttingen, in Poincaré: Philosopher of Science, Problems and Perspectives, ed. by M. de Paz, R. DiSalle. The Western Ontario Series in the Philosophy of Science, vol. 79 (Springer, Berlin, 2014), pp. 83–99

    Google Scholar 

  63. A. Kanamori, The Higher Infinite, 2nd edn. (Springer, Berlin, 2003). 1st edition 1994

    Google Scholar 

  64. U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics. (Springer, Berlin, 2008)

    Google Scholar 

  65. A.N. Kolmogorov, O principe tertium non datur. Matematicheskij Sbornik 32, 646–667 (1925). Reprinted in English translation as On the principle of the excluded middle in [113, p. 414–447]

    Google Scholar 

  66. G. Kreisel, Hilbert’s programme. Dialectica 12, 346–372 (1958). Reprinted in [9, pp. 207–238 of the second edition]

    Google Scholar 

  67. G. Kreisel, A survey of proof theory. J. Symb. Log. 33(3), 321–388 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  68. G. Kreisel, Formal rules and questions of justifying mathematical practice, in Konstruktionen versus Positionen, ed, by K. Lorenz. vol. 1: Spezielle Wissenschaftslehre (de Gruyter, Berlin, 1979), pp. 99–130

    Google Scholar 

  69. G. Kreisel et al., Reports of Seminar on the Foundations of Analysis (“Stanford report”). Technical report, Stanford University, Summer 1963

    Google Scholar 

  70. P. Lorenzen, Logik und Agon, in Atti del XII Congresso Internazionale di Filosofia, vol. 4 (Sansoni, Firenze, 1960), pp. 187–194. Reprinted in [71]

    Google Scholar 

  71. P. Lorenzen, K. Lorenz, Dialogische Logik (Wissenschaftliche Buchgesellschaft, Darmstadt, 1978)

    MATH  Google Scholar 

  72. A. Macintyre, The mathematical significance of proof theory. Philos. Trans. R. Soc. A 363, 2419–2435 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  73. P. Maddy, Naturalism in Mathematics (Clarendon Press, Oxford, 1997)

    MATH  Google Scholar 

  74. C. McLarty, What does it take to prove Fermat’s last theorem? Grothendieck and the logic of number theory. Bull. Symb. Log. 16(3), 359–377 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  75. F. Meskens, A. Weiermann, Classifying phase transition thresholds for Goodstein sequences and Hydra games, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  76. G. Mints, Gentzen-type systems and Hilbert’s epsilon substitution method. I, in Logic, Methodology, and Philosophy of Science IX, ed. by D. Prawitz, B. Skyrms, D. Westerstahl (Elsevier, Amsterdam, 1994), pp. 91–122

    Google Scholar 

  77. G. Mints, Non-deterministic epsilon substitution method for PA and ID1, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  78. G. Mints, S. Tupailo, W. Buchholz, Epsilon substitution method for elementary analysis. Arch. Math. Log. 35, 103–130 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  79. S. Negri, J. von Plato, Structural Proof Theory (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  80. P. Oliva, T. Powell, A game-theoretic computational interpretation of proofs in classical analysis, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  81. W. Pohlers, Subsystems of set theory and second order number theory, in Handbook of Proof Theory, ed. by S.R. Buss. Studies in Logic and Foundations of Mathematics, vol. 137 (Elsevier, Amsterdam, 1998), pp. 209–335

    Google Scholar 

  82. W. Pohlers, Proof Theory. Universitext (Springer, Berlin, 2009)

    MATH  Google Scholar 

  83. W. Pohlers, Semi-formal calculi and their applications, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  84. H. Poincaré, Les mathématiques et la logique. Revue de métaphysique et de morale 14, 294–317 (1906). Translated in [22, vol. 2, pp. 1052–1071]

    Google Scholar 

  85. H. Poincaré, Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik (Teubner, Leipzig, 1910)

    Google Scholar 

  86. D. Prawitz, Hauptsatz for higher order logic. J. Symb. Log. 33, 452–457 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  87. D. Prawitz, Extending Gentzen’s 2nd consistency proof to normalization of natural deductions in 1st order arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  88. M. Rathjen, Ordinal analysis of parameter free \(\Pi _{2}^{1}\)-comprehension. Arch. Math. Log. 44(3), 263–362 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  89. M. Rathjen, An ordinal analysis of stability. Arch. Math. Log. 44(1), 1–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  90. M. Rathjen, Goodstein’s theorem revisited, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  91. M. Rathjen, P.F.V. Vizcaíno, Well ordering principles and bar induction, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  92. C. Reid, Hilbert (Springer, Berlin, 1970)

    Book  MATH  Google Scholar 

  93. K. Schütte, Syntactical and semantical properties of simple type theory. J. Symb. Log. 25, 303–326 (1960)

    Google Scholar 

  94. K. Schütte, Proof Theory (Springer, Berlin, 1977)

    Book  MATH  Google Scholar 

  95. A. Setzer, The use of trustworthy principles in a revised Hilbert’s program, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  96. J.R. Shoenfield, Mathematical Logic. (Addison-Wesley, Reading, 1967). Reprinted Association for Symbolic Logic and AK Peters, 2001

    Google Scholar 

  97. A. Siders, A direct Gentzen-style consistency proof for Heyting arithmetic, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  98. W. Sieg, Hilbert’s programs: 1917–1922. Bull. Symb. Log. 5(1), 1–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  99. S.G. Simpson, Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic (Association for Symbolic Logic and Cambridge University Press, New York, 2009)

    Google Scholar 

  100. R. Smullyan, Gödel’s Incompleteness Theorems. Oxford Logic Guides, vol. 19. (Oxford University Press, New York, 1992)

    Google Scholar 

  101. C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics, in Recursive Function Theory, ed. by F.D.E. Dekker. Proceedings of Symposia in Pure Mathematics, vol. 5 (American Mathematical Society, Providence, 1962), pp. 1–27

    Google Scholar 

  102. M.E. Szabo, The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1969)

    Google Scholar 

  103. W.W. Tait, A non constructive proof of Gentzen’s Hauptsatz for second order predicate logic. Bull. Am. Math. Soc. 72, 980–983 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  104. W.W. Tait, Finitism. J. Philos. 78, 524–546 (1981)

    Article  Google Scholar 

  105. W.W. Tait, Gentzen’s original consistency proof and the bar theorem, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  106. M. Takahashi, A proof of cut-elimination in simple type theory. J. Math. Soc. Jpn. 19, 399–410 (1967)

    Article  MATH  Google Scholar 

  107. G. Takeuti, On a generalized logic calculus. Jpn. J. Math. 23, 39–96 (1953)

    MATH  MathSciNet  Google Scholar 

  108. G. Takeuti, Proof Theory, 2nd edn. (North-Holland, Amsterdam, 1987)

    MATH  Google Scholar 

  109. A. Tarski, Contribution to the discussion of P. Bernays ‘Zur Beurteilung der Situation in der beweistheoretischen Forschung’. Revue internationale de philosophie 8, 16–20 (1954). Reprinted in [110, pp. 711–714]

    Google Scholar 

  110. A. Tarski, Collected Papers, vol. IV (Birkhäuser, Basel, 1986)

    MATH  Google Scholar 

  111. A.S. Troelstra, H. Schwichtenberg, Basic Proof Theory. Cambridge Tracts in Theoretical Computer Science, vol. 43, 2nd edn. (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  112. D. van Dalen, Brouwer and Fraenkel on intuitionism. Bull. Symb. Log. 6(3), 284–310 (2000)

    Article  MATH  Google Scholar 

  113. J. van Heijenoort (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. (Harvard University Press, Cambridge, 1967)

    MATH  Google Scholar 

  114. J. von Plato, From Hauptsatz to Hilfssatz, in Gentzen’s Centenary: The Quest for Consistency, ed. by R. Kahle, M. Rathjen (Springer, Heidelberg, 2015)

    Google Scholar 

  115. J. von Plato (ed.)Saved from the Cellar. Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics. to appear, 201x

    Google Scholar 

  116. H. Wang, Some facts about Kurt Gödel. J. Symb. Log. 46(3), 653–659 (1981)

    Article  MATH  Google Scholar 

  117. H. Weyl, Das Kontinuum. (Veit, Leipzig, 1918). English translation: [118]

    Google Scholar 

  118. H. Weyl, The Continuum: A Critical Examination of the Foundation of Analysis. (Thomas Jefferson University Press, 1987), (Corrected re-publication, Dover 1994). English translation of [117].

    Google Scholar 

  119. W.H. Woodin, The transfinite universe, in Kurt Gödel and the Foundations of Mathematics, ed. by M. Baaz et al. (Cambridge University Press, New York, 2011), pp. 449–471

    Chapter  Google Scholar 

  120. M. Yasugi, N. Passell (eds.) Memoirs of a Proof Theorist (World Scientific, Singapore, 2003). English translation of a collection of essays written by Gaisi Takeuti

    Google Scholar 

  121. E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre I. Math. Ann. 65, 261–281 (1908)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported by the Portuguese Science Foundation, FCT, through the projects Hilbert’s Legacy in the Philosophy of Mathematics, PTCD/FIL-FCI/109991/2009, The Notion of Mathematical Proof, PTDC/MHC-FIL/5363/2012, and the Centro de Matemática e Aplicações, UID/MAT/00297/2013; and by the project Método axiomática e teoria de categorias of the cooperation Portugal/France in the Programa PESSOA – 2015/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Kahle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kahle, R. (2015). Gentzen’s Consistency Proof in Context. In: Kahle, R., Rathjen, M. (eds) Gentzen's Centenary. Springer, Cham. https://doi.org/10.1007/978-3-319-10103-3_1

Download citation

Publish with us

Policies and ethics