Skip to main content

Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology

  • Chapter
  • First Online:
Applications of Membrane Computing in Systems and Synthetic Biology

Abstract

This chapter gives an overview of an integrated software suite, the Infobiotics Workbench, which is based on a novel spatial discrete-stochastic P systems modelling framework. The Workbench incorporates three important features, simulation, model checking and optimisation. Its capability for building, analysing and optimising large spatially discrete and stochastic models of multicellular systems makes it a useful, coherent and comprehensive in silico tool in systems and synthetic biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.infobiotics.org

  2. 2.

    The \(\mathbf{P}_{\sim r}\) operator is the probabilistic counter-part of path-quantifiers \(\forall \) and \(\exists \) of CTL.

  3. 3.

    At the moment, the NLQ tool is not integrated into the Infobiotics Workbench. But, the properties it generates can be directly used in IBW’s model checking component.

References

  1. U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)

    Article  Google Scholar 

  2. R. Alur, T. Henzinger, Reactive modules. Formal Methods Syst. Des. 15, 7–48 (1999)

    Article  Google Scholar 

  3. C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29, 524–541 (2003)

    Article  Google Scholar 

  4. S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    Article  Google Scholar 

  5. S. Basu, R. Mehreja, S. Thiberge, M.-T. Chen, R. Weiss, Spatiotemporal control of gene expression with pulse-generating networks. PNAS 101(17), 6355–6360 (2004)

    Article  Google Scholar 

  6. F. Bernardini, M. Gheorghe, F. Romero-Campero, N. Walkinshaw, A hybrid approach to modelling biological systems, in Proceedings of 8th Workshop on Membrane Computing, vol. 4860 (LNCS/Springer, 2007), pp. 138–159

    Google Scholar 

  7. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare : a software for the modeling, simulation and analysis of biological systems, in CMC 2010, vol. 6501 (LNCS/Springer, 2010), pp. 119–143

    Google Scholar 

  8. D. Besozzi, P. Cazzaniga, G. Mauri, D. Pescini, BioSimWare: a P systems-based simulation environment for biological systems, in 11th International Conference on Membrane Computing 2010, vol. 6501 (LNCS, 2010), pp. 119–143

    Google Scholar 

  9. D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, Modelling metapopulations with stochastic membrane systems. Biosystems 91(3), 499–514 (2008)

    Article  Google Scholar 

  10. D. Besozzi, P. Cazzaniga, D. Pescini, G. Mauri, S. Colombo, E. Martegani, The role of feedback control mechanisms on the establishment of oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J. Bioinf. Syst. Biol. 2012, 10 (2012)

    Article  Google Scholar 

  11. L. Bianco, A. Castellini, Psim: a computational platform for metabolic P systems, in Workshop on Membrane Computing (2007), pp. 1–20

    Google Scholar 

  12. BioSimWare. http://biosimware.disco.unimib.it/

  13. J. Blakes, Infobiotics: computer-aided synthetic systems biology. Ph.D. thesis, School of Computer Science, University of Nottingham, UK, 2012

    Google Scholar 

  14. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The infobiotics workbench: an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 27(23), 3323–3324 (2011)

    Article  Google Scholar 

  15. M. Calder, A. Duguid, S. Gilmore, J. Hillston, Stronger computational modelling of signalling pathways using both continuous and discrete-state methods, in Proceedings of CMSB 2006, vol. 4210 (LNCS, 2006), pp. 63–77

    Google Scholar 

  16. M. Calder, S. Gilmore, J. Hillston, Automatically deriving ODEs from process algebra models of signalling pathways, in Proceedings of CMSB 2005, Edinburgh. Scotland (2005), pp. 204–215

    Google Scholar 

  17. M. Calder, S. Gilmore, J. Hillston, Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA, in Transactions on Computational Systems Biology VII, vol. 4230 of Lecture Notes in Computer Science, ed. by C. Priami, A. Inglfsdttir, B. Mishra, H. Riis Nielson (Springer, Berlin Heidelberg, 2006), pp. 1–23

    Google Scholar 

  18. M. Calder, S. Gilmore, J. Hillston, V. Vyshemirsky, Formal methods for biochemical signalling pathways, in Formal Methods: State of the Art and New Directions (Springer, Berlin, 2006), pp. 185–215

    Google Scholar 

  19. B. Canton, A. Labno, D. Endy, Refine and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26(7), 787–793 (2008)

    Article  Google Scholar 

  20. H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor, Evolving cell models for systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010)

    Article  Google Scholar 

  21. Y. Cao, D.T. Gillespie, L.R. Petzold, Adaptive explicit–implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126(22), 224101 (2007)

    Article  Google Scholar 

  22. Y. Cao, L. Petzold, Slow scale tau-leaping method. Comput. Methods Appl. Mech. Eng. 197, 43–44 (2008)

    MathSciNet  Google Scholar 

  23. M. Cavaliere, T. Mazza, S. Sedwards, Statistical model checking of membrane systems with peripheral proteins: quantifying the role of estrogen in cellular mitosis and DNA damage, in Applications of Membrane Systems to Biology, Emergence, Complexity and Computation, ed. by P. Frisco, M. Gheorghe, M. Pérez-Jiménez (Springer, 2013)

    Google Scholar 

  24. P. Cazzaniga, D. Pescini, D. Besozzi, G. Mauri, Tau leaping stochastic simulation method in P systems, in Workshop on Membrane Computing, vol. 4361 (LNCS, 2006), pp. 298–313

    Google Scholar 

  25. F. Ciocchetta, J. Hillston, Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Corne, P. Frisco, Dynamics of HIV infection studied with cellular automata and conformon-P systems. Biosystems 3(91), 531–544 (2008)

    Article  Google Scholar 

  27. V. Danos, J. Feret, W. Fontana, J. Krivine, Scalable modelling of biological pathways, in Asian Symposium on Programming Systems, vol. 4807 (LNCS, 2007), pp. 139–157

    Google Scholar 

  28. M.A.M. del Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.R.-N. Nez, F. Sancho-Caparrini, A formal verification algorithm for multienvironment probabilistic P systems. Int. J. Found. Comput. Sci. 22(1), 107–118 (2011)

    Article  MATH  Google Scholar 

  29. L. Dematté, C. Priami, A. Romanel, The beta workbench: a computational tool to study the dynamics of biological systems. Brief. Bioinform. 9(5), 437–449 (2008)

    Article  Google Scholar 

  30. L. Dematté, C. Priami, A. Romanel, The BlenX language: a tutorial, in Formal Methods for Computational Systems Biology, SFM 2008, vol. 5054 (LNCS, 2008), pp. 123–138

    Google Scholar 

  31. A. Deutsch, S. Dromann, Cellular Automata Modeling of Biological Pattern Formation (Springer, Heidelberg, 2009)

    Google Scholar 

  32. M. J. Dinneen, Y.-B. Kim, R. Nicolescu, Edge- and node-disjoint paths in P systems, in Proceedings 4th Workshop on Membrane Computing and Biologically Inspired Process Calculi (MeCBIC 2010), ed. by M.K.G. Ciobanu, vol. 40 (EPTCS, 2010), pp. 121–141

    Google Scholar 

  33. R. Donaldson, MC2(PLTLc) Monte Carlo Model Checker for PLTLc properties (2008)

    Google Scholar 

  34. R. Donaldson, D. Gilbert, A, Model checking approach, to the parameter estimation of biochemical pathways, in CMSB 2008, vol. 5307 (LNBI, Springer-Verlag, 2008), pp. 269–287

    Google Scholar 

  35. R. Donaldson, D. Gilbert, A Monte Carlo Model Checker for probabilistic LTL with numerical constraints. Technical report, Bioinformatics Research Centre, University of Glasgow, Glasgow, 2008

    Google Scholar 

  36. C. Dragomir, From P systems specification to prism. Master’s thesis, Department of Computer Science, University of Sheffield, Sheffield, UK, 2009

    Google Scholar 

  37. M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications for finite-state verification, in Proceedings of the 21st international conference on Software engineering, ICSE ’99 (ACM, 1999), pp. 411–420

    Google Scholar 

  38. J. Elf, M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1(2), 230–236 (2004)

    Article  Google Scholar 

  39. G.B. Ermentrout, L. Edelstein-Keshet, Cellular automata approaches to biology. J. Theor. Biol. 160, 97–133 (1993)

    Article  Google Scholar 

  40. J.R. Faeder, M.L. Blinov, W.S. Hlavacek, Rule-based modeling of biochemical systems with BioNetGen, in Methods in Molecular Biology, Systems Biology, vol. 500 of Methods in Molecular Biology, ed. by I.V. Maly (Humana Press, Totowa, 2009), pp. 113–167

    Google Scholar 

  41. A. Feiglin, A. Hacohen, A. Sarusi, J. Fisher, R. Unger, Y. Ofran, Static network structure can be used to model the phenotypic effects of perturbations in regulatory networks. Bioinformatics 28(21), 2811–2818 (2012)

    Article  Google Scholar 

  42. J. Fisher, T. Henzinger, Executable biology, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1675–1682

    Google Scholar 

  43. J. Fisher, T.A. Henzinger, Executable cell biology. Nat. Biotechnol. 25(11), 1239–1249 (2007)

    Article  Google Scholar 

  44. J. Fisher, N. Piterman, E.J.A. Hubbard, M.J. Stern, D. Harel, Computational insights into Caenorhabditis elegans vulval development. PNAS 102(6), 1951–1956 (2005)

    Article  Google Scholar 

  45. D. Florine, J. Santiago, K. Betz, J. Twycross, S.-Y. Park, L. Rodriguez, M. Gonzalez-Guzman, M. Jensen, N. Krasnogor, M. Holdsworth, M. Blackledge, S. Cutler, P. Rodriguez, J. Marquez, A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 30, 4171–4184 (2011)

    Article  Google Scholar 

  46. P. Frisco, Computing with Cells: Advances in Membrane Computing (Oxford University Press, Oxford, 2009)

    Book  Google Scholar 

  47. A. Funahashi, Y. Matsuoka, A. Jouraku, M. Morohashi, N. Kikuchi, H. Kitano, Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96(8), 1254–1265 (2008)

    Article  Google Scholar 

  48. M. Galassi, GNU Scientific Library Reference Manual, 3rd edn. (GNU, 2009)

    Google Scholar 

  49. Q. Gao, F. Liu, D. Tree, D. Gilbert, Multi-cell modelling using coloured Petri nets applied to planar cell polarity, in Proceedings of the 2nd International Workshop on Biological Processes and Petri Nets (BioPPN2011) (2011), pp. 135–150

    Google Scholar 

  50. L. Gerosa, Stochastic process algebras as design and analysis framework for synthetic biology modelling. Master’s thesis, University of Trento, 2007

    Google Scholar 

  51. M. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  52. D. Gilbert, H. Fuss, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.J. Kurth, C.S. Downes, W. Dubitzky, Computational methodologies for modelling, analysis and simulation of signalling networks. Brief. Bioinform. 7, 339–353 (2006)

    Article  Google Scholar 

  53. D. Gilbert, M. Heiner, S. Lehrack, A unifying framework for modelling and analysing biochemical pathways using Petri nets, in Proceedings of the, international conference on Computational methods in systems biology, CMSB’07 (Springer-Verlag, Berlin, 2007)

    Google Scholar 

  54. D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  55. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  56. D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  57. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716 (2001)

    Article  Google Scholar 

  58. D.T. Gillespie, Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  59. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Welsey, Boston, 1989)

    MATH  Google Scholar 

  60. L. Grunske, Specification patterns for probabilistic quality properties, in Proceedings of the 30th international conference on Software engineering, ICSE ’08 (ACM, 2008), pp. 31–40

    Google Scholar 

  61. M.L. Guerriero, D. Prandi, C. Priami, P. Quaglia, Process calculi abstractions for biology. Technical report, CoSBi (Center for Computational and Systems Biology), Trento, Italy, 2006

    Google Scholar 

  62. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)

    Article  Google Scholar 

  63. H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 102–111 (1994)

    Google Scholar 

  64. L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  65. M. Heiner, D. Gilbert, R. Donaldson, Petri nets for systems and synthetic biology. Formal Methods Comput. Syst. Biol. 5016, 215–264 (2008)

    Article  Google Scholar 

  66. T. Hinze, C. Bodenstein, B. Schau, I. Heiland, S. Schuster, Chemical analog computers for clock frequency control based on P modules, in Proceedings of the 12th International Conference on Membrane Computing, CMC’11 (Springer-Verlag, 2012), pp. 182–202

    Google Scholar 

  67. T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster, Modelling signalling networks with incomplete information about protein activation states: a P system framework for KaiABC oscillator, in Workshop on Membrane Computing, vol. 5957 (LNCS, 2010), pp. 316–334

    Google Scholar 

  68. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  69. M. Hucka, A. Finney, J. Bornstein, M. Keating, E. Shapiro, J. Matthews, L. Kovitz, J. Schilstra, A. Funahashi, C. Doyle, H. Kitano, Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. 1, 41–53 (2004)

    Article  Google Scholar 

  70. J. Jack, A. Păun, Discrete modeling of biochemical signaling with memory enhancement. Trans. Comput. Syst. Biol. 11, 200–215 (2009)

    Google Scholar 

  71. K. Jensen, L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of Concurrent Systems (Springer, Berlin, 2009)

    Book  Google Scholar 

  72. S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  Google Scholar 

  73. S. Konrad, B. Cheng, Real-time specification patterns, in Proceedings of 27th International Conference on Software Engineering (2005), pp. 372–381

    Google Scholar 

  74. M. Kwiatkowska, J. Heath, E. Gaffney, Simulation and verification for computational modelling of signalling pathways, in Proceedings of the 2006 Winter Simulation Conference (2006), pp. 1666–1674

    Google Scholar 

  75. M. Kwiatkowska, G. Norman, D. Parker, Using probabilistic model checking in systems biology. ACM Sigmetrics Perform. Eval. Rev. 35(4), 14–21 (2008)

    Article  Google Scholar 

  76. M.Z. Kwiatkowska, G. Norman, D. Parker, Probabilistic model checking in practice: case studies with PRISM. Sigmetrics Perform. Eval. Rev. 32(4), 16–21 (2005)

    Article  Google Scholar 

  77. J. C. Lagarias, Point lattices, in Handbook of Combinatorics, vol. 1 (Elsevier, Amsterdam, 1995)

    Google Scholar 

  78. A. Mallavarapu, M. Thomson, B. Ullian, J. Gunawardena, Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface 6, 257–270 (2009)

    Article  Google Scholar 

  79. V. Manca, The metabolic algorithm for P systems: principles and applications. Theor. Comput. Sci. 404(1–2), 142–155 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  80. V. Manca, Metabolic P systems. Scholarpedia 5(3), 9273 (2010)

    Article  Google Scholar 

  81. V. Manca, Infobiotics: Information in Biotic Systems (Springer, Berlin, 2013)

    Google Scholar 

  82. V. Manca, L. Marchetti, Log-gain stoichiometric stepwise regression for MP systems. Int. J. Found. Comput. Sci. 22(01), 97–106 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  83. M. Martínez-del Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A. Elster, M. Pérez-Jiménez, Population dynamic P systems on CUDA, in Workshop on Membrane Computing, vol. 7605 (LNCS, 2012), pp. 247–266–313

    Google Scholar 

  84. Matplotlib. http://matplotlib.org

  85. MetaPlab. http://mplab.sci.univr.it/

  86. R. Milner, Communicating and Mobile Systems: \(\pi \) -Calculus (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  87. I.I. Moraru, J.C. Schaff, B.M. Slepchenko, L.L.M. The, virtual cell: an integrated modeling environment for experimental and computational cell biology. Ann. N. Y. Acad. Sci. 971, 595–596 (2002)

    Article  Google Scholar 

  88. S. Natkin, Les Reseaux de Petri Stochastiques et leur Application a lEvaluation des Systemes Informatiques. Ph.D. thesis, CNAM, Paris, France, 1980

    Google Scholar 

  89. A. Obtulowicz, Generalized Gandy–Păun–Rozenberg machines for tile systems and cellular automata, in Membrane Computing, vol. 7184 of Lecture Notes in Computer Science, ed. by M. Gheorghe, G. Păun, G. Rozenberg, A. Salomaa, S. Verlan (Springer, Berlin Heidelberg, 2012), pp. 314–332

    Google Scholar 

  90. Z. Ognjanović, Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Logic Comput. 16(2), 257–285 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  91. G. Păun, Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Google Scholar 

  92. G. Păun, F.J. Romero-Campero, Membrane computing as a modeling framework. Cellular systems case studies, in Formal Methods for Computational Systems Biology, vol. 5016 (LNCS, 2008), pp. 168–214

    Google Scholar 

  93. M. Pedersen, A. Phillips, Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface R. Soc. 6(Suppl 4), S437–S450 (2009)

    Google Scholar 

  94. M. Pedersen, G. D. Plotkin, A language for biochemical systems : design and formal specification, in Transactions on Computational Systems Biology XIIC, ed. by C. Priami, vol. 5945 (LNBI, 2010), pp. 77–145

    Google Scholar 

  95. I. Pérez-Hurtado, L. Valencia, M. Pérez-Jiménez, M. Colomer, A. Riscos-Núńez, General purpose software tool for simulating biological phenomena by means of P Systems, in Proceedings of IEEE 5th International Conference BIC-TA 2010, Changsha, China (2010), pp. 637–643

    Google Scholar 

  96. D. Pescini, D. Besozzi, G. Mauri, C. Zandron, Dynamic probabilistic P systems. Int. J. Found. Comput. Sci. 1(17), 183–204 (2006)

    Article  MathSciNet  Google Scholar 

  97. Petri nets tool database. http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html

  98. A. Phillips, L. Cardelli, A correct abstract machine for the stochastic Pi-calculus, in Concurrent Models in Molecular Biology, BioConcur ’04 (ENTCS, 2004)

    Google Scholar 

  99. A. Phillips, L. Cardelli, G. Castagna, A graphical representation for biological processes in the stochastic \(\pi \)-calculus. Trans. Comput. Syst. Biol. 4230, 123–152 (2006)

    MathSciNet  Google Scholar 

  100. A. Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society Press, 1977), pp. 46–57

    Google Scholar 

  101. C. Priami, Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)

    Article  Google Scholar 

  102. C. Priami, Algorithmic systems biology. Commun. ACM 52, 80–88 (2009)

    Article  Google Scholar 

  103. C. Priami, P. Quaglia, Modelling the dynamics of biosystems. Brief. Bioinform. 5(3), 259–269 (2004)

    Article  Google Scholar 

  104. C. Priami, A. Regev, E. Shapiro, W. Silverman, Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inform. Process. Lett. 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  105. Pulse Generator. http://www.infobiotic.org/models/pulseGenerator/pulseGenerator.html

  106. R. Ramaswamy, N. González-Segredo, I.F. Sbalzarini, A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks. J. Chem. Phys. 130(24), 244104 (2009)

    Article  Google Scholar 

  107. V.N. Reddy, M.N. Liebman, M.L. Mavrovouniotis, Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996)

    Article  Google Scholar 

  108. V.N. Reddy, M.L. Mavrovouniotis, M.N. Liebman, Petri net representations in metabolic pathways. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1, 328–336 (1993)

    Google Scholar 

  109. A. Regev, W. Silverman, E. Shapiro, Representation and simulation of biochemical processes using the \(\pi \)-calculus process algebra, in Pacific Symposium on Biocomputation, vol. 26 (2001), pp. 459–470

    Google Scholar 

  110. F. Romero-Campero, M. Gheorghe, L. Bianco, D. Pescini, M. Pérez-Jiménez, R. Ceterchi, Towards probabilistic model checking on P systems using PRISM, in Membrane Computing, volume 4361 (LNCS/Springer, Berlin, 2006), pp. 477–495

    Google Scholar 

  111. F. J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor, Structure and parameter estimation for cell systems biology models, in Proceedings of the 10th annual conference on Genetic and Evolutionary Computation (GECCO ’08) (2008), pp. 331–339

    Google Scholar 

  112. F.J. Romero-Campero, M. Gheorghe, G. Ciobanu, J.M. Auld, M.J. Pérez-Jiménez, Cellular modelling using P systems and process algebra. Prog. Nat. Sci. 17, 375–383 (2007)

    Article  MATH  Google Scholar 

  113. F.J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheorghe, N. Krasnogor, Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 20(03), 427–442 (2009)

    Article  MATH  Google Scholar 

  114. F. J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, N. Krasnogor, A multiscale modeling framework based on P systems, in WMC9 2008 (Springer-Verlag, Berlin, 2009), pp. 63–77

    Google Scholar 

  115. The p-lingua web page. http://www.p-lingua.org

  116. R.P. Shetty, D. Endy, T.F. Knight, Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008)

    Article  Google Scholar 

  117. A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128(20), 205101 (2008)

    Article  Google Scholar 

  118. M.W. Sneddon, J.R. Faeder, T. Emonet, Efficient modeling, simulation and coarse-grain of biological complexity with NFsim. Nat. Methods 8, 177–183 (2011)

    Article  Google Scholar 

  119. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  120. F. J. W. Symons, Introduction to numerical Petri nets, a general graphical model of concurrent processing systems. Aust. Telecommun. Res. 14(1), 26 (1980)

    Google Scholar 

  121. J. Twycross, L.R. Band, M.J. Bennett, J.R. King, N. Krasnogor, Stochastic and deterministic multiscale models for systems biology: an auxin-transport case study. BMC Syst. Biol. 4(1), 1–34 (2010)

    Article  Google Scholar 

  122. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern, Generalized communicating P systems. Theor. Comput. Sci. 404(1–2), 170–184 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  123. J. Will, M. Heiner, Petri nets in biology, chemistry, and medicine. Bibliography. Technical report, Brandenbury University of Technology at Cottbus, 2002

    Google Scholar 

  124. S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)

    MATH  Google Scholar 

  125. A. Yachie-Kinoshita, T. Nishino, H. Shimo, M. Suematsu, M. Tomita, A metabolic model of human erythrocytes: practical application of the e-cell simulation environment. Biomed. Biotechnol. 2010, 642420 (2010)

    Google Scholar 

Download references

Acknowledgments

JB, JT, SK, NK and MG acknowledge the support provided for synthetic biology research by EPSRC ROADBLOCK project (EP/I031642/1 & EP/I031812/1), EPSRC AUDACIOUS project (EP/J004111/1) and FP7 STREP CADMAD project. JR-C acknowledges support from Cellular Computing Applications into Systems and Synthetic Biology, TIN2009-13192, and Computational Modelling and Simulation in Systems Biology, P08-TIC-04200. MG was also partially supported by the MuVet project, (CNCS–UEFISCDI), grant number PN-II-ID-PCE-2011-3-0688. Some parts of this paper are based on the first author’s Ph.D. thesis [13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Blakes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe, M. (2014). Infobiotics Workbench: A P Systems Based Tool for Systems and Synthetic Biology. In: Frisco, P., Gheorghe, M., Pérez-Jiménez, M. (eds) Applications of Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity and Computation, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-03191-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03191-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03190-3

  • Online ISBN: 978-3-319-03191-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics