Skip to main content

Multi-scale Microstructure and Property-Based Statistically Equivalent RVEs for Modeling Nickel-Based Superalloys

  • Chapter
  • First Online:
Integrated Computational Materials Engineering (ICME)

Abstract

This chapter discusses fundamental aspects of the development of statistically equivalent virtual microstructures (SEVMs) and microstructure and property-based statistically equivalent representative volume elements (M-SERVE and P-SERVE) of the Ni-based superalloy at multiple scales. The two specific scales considered for this development are the subgrain scale of intragranular γ − γ′ microstructures and the polycrystalline scale of grain ensembles with annealing twins. A comprehensive suite of computational methods that can translate microstructural data in experimental methods to optimally defined representative volumes for effective micromechanical modeling is the objective of this study. The framework involves a sequence of tasks, viz., serial sectioning, image processing, feature extraction, and statistical characterization, followed by micromechanical analysis and convergence tests for statistical functions. A principal motivation behind this paper is to translate high-fidelity microstructural image data into statistics of parametric descriptors in constitutive laws governing material performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. McLean, R.W. Cahn, Nickel-Base Superalloys: Current Status and Potential (Chapman and Hall, London, 1996)

    Google Scholar 

  2. D. Furrer, H. Fecht, Ni-based superalloys for turbine discs. J. Miner. Met. Mater. Soc. 51, 14–17 (1999)

    Article  CAS  Google Scholar 

  3. T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Prop. Power 22(2), 361–374 (2006)

    Article  CAS  Google Scholar 

  4. A. Epishin, T. Link, U. Bruckner, P.D. Portella, Kinetics of the topological inversion of the γγ′-microstructure during creep of a nickel-based superalloy. Acta Mater. 49, 4017–4023 (2001)

    Article  CAS  Google Scholar 

  5. M. Ignat, J.Y. Buffiere, J.M. Chaix, Microstructures induced by a stress gradient in a nickel-based superalloy. Acta Mater. 41, 855–862 (1993)

    Article  CAS  Google Scholar 

  6. G.B. Viswanathan, P.M. Sarosi, D.H. Whitis, M.J. Mills, Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy Rene 88 DT. Mater. Sci. Eng. A 400, 489–495 (2005)

    Article  CAS  Google Scholar 

  7. J.S. Van Sluytman, T.M. Pollock, Optimal precipitate shapes in nickel-base γ −γ′ alloys. Acta Mater. 60, 1771–1783 (2012)

    Article  CAS  Google Scholar 

  8. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M.J. Mills, Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Progr. Mater. Sci. 54, 839–873 (2009)

    Article  CAS  Google Scholar 

  9. R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, M.J. Mills, Dislocation decorrelation and relationship to deformation microtwins during creep of a γ′ precipitate strengthened Ni-based superalloy. Acta Mater. 54, 7325–7339 (2011)

    Article  CAS  Google Scholar 

  10. J. Cormier, X. Milhet, J. Mendez, Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy. Acta Mater. 55, 6250–6259 (2007)

    Article  CAS  Google Scholar 

  11. H.U. Hong, I.S. Kim, B.G. Choi, M.Y. Kim, C.Y. Jo, The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy. Mat. Sci. Eng. A 517, 125–131 (2009)

    Article  CAS  Google Scholar 

  12. Y.S. Choi, T.A. Parthasarathy, D.M. Dimiduk, M.D. Uchic, Microstructural effects in modeling the flow behavior of single-crystal superalloys. Met. Mat. Trans. A 37(3), 545–550 (2006)

    Article  Google Scholar 

  13. C. Allan, Plasticity of Nickel Base Single Crystal Superalloys. Ph.D. thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  14. A. Ma, F. Roters, A constitutive model for FCC single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater. 52(12), 3603–3612 (2004)

    Article  CAS  Google Scholar 

  15. A.M. Cuitino, M. Ortiz, Constitutive modeling of L12 intermetallic crystals. Mater. Sci. Eng. A 170(1), 111–123 (1993)

    Article  Google Scholar 

  16. T. Tinga, W.A.M. Brekelmans, M.G.D. Geers, Cube slip and non-Schmid effects in single crystal Ni-base superalloys. Model. Simul. Mater. Sci. Eng. 18(1), 015005 (2010)

    Google Scholar 

  17. E.P. Busso, K.S. Cheong, Length scale effects on the macroscopic behaviour of single and polycrystalline FCC crystals. Le J. Phys. IV 11(PR5), 161–170 (2001)

    Google Scholar 

  18. J. Zhang, M. Shenoy, D.L. McDowell, Estimating fatigue sensitivity to polycrystalline Ni-base superalloy microstructures using a computational approach. Fatigue Fract. Eng. Mater. Struct. 30, 889–904 (2007)

    Article  CAS  Google Scholar 

  19. S. Keshavarz, S. Ghosh, Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys. Acta Mater. 61(17), 6549–6561 (2013)

    Article  CAS  Google Scholar 

  20. S. Keshavarz, S. Ghosh, Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int. J. Sol. Struct. 55, 17–31 (2015)

    Article  CAS  Google Scholar 

  21. S. Ghosh, G. Weber, S. Keshavarz, Multiscale modeling of polycrystalline nickel-based superalloys accounting for subgrain microstructures. Mech. Res. Commun. 78, 34–46 (2016)

    Article  Google Scholar 

  22. S. Keshavarz, S. Ghosh, A crystal plasticity finite element model for flow stress anomalies in Ni3Al single crystals. Philos. Mag. 95(24), 2639–2660 (2015)

    Article  CAS  Google Scholar 

  23. S. Keshavarz, S. Ghosh, A. Reid, S. Langer, A non-Schmid crystal plasticity finite element approach to multi-scale modeling of nickel-based superalloys. Acta Mat. 114, 106–115 (2016)

    Article  CAS  Google Scholar 

  24. R. Hill, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11(5), 357–372 (1963)

    Article  Google Scholar 

  25. I.M. Gitman, H. Askes, L.J. Sluys, Representative volume: existence and size determination. Eng. Fract. Mech. 74(16), 2518–2534 (2007)

    Article  Google Scholar 

  26. S. Swaminathan, S. Ghosh, N.J. Pagano, Statistically equivalent representative volume elements for composite microstructures, Part I: without damage. J. Comput. Mater. 40(7), 583–604 (2006)

    CAS  Google Scholar 

  27. S. Swaminathan, S. Ghosh, Statistically equivalent representative volume elements for composite microstructures, Part II: with interfacial debonding. J. Comput. Mater. 40(7), 605–621 (2006)

    CAS  Google Scholar 

  28. D. McDowell, S. Ghosh, S. Kalidindi, Representation and computational structure-property relations of random media. JOM J. Miner. Met. Mater. Soc. 63(3), 45–51 (2011)

    Article  Google Scholar 

  29. A. Bagri, G. Weber, J.C. Stinville, W. Lenthe, T. Pollock, C. Woodward, S. Ghosh, Microstructure and property-based statistically equivalent representative volume elements for polycrystalline Ni-based superalloys containing annealing twins. Metall. Mater. Trans. A 49(11), 5727–5744 (2018)

    Article  CAS  Google Scholar 

  30. M. Pinz, G. Weber, W.C. Lenthe, M.D. Uchic, T.M. Pollock, S. Ghosh, Microstructure and property based statistically equivalent RVEs for intragranular γ −γ’ microstructures of Ni-based superalloys. Acta Mat. 157, 245–258 (2018)

    Article  CAS  Google Scholar 

  31. X. Tu, A. Shahba, J. Shen, S. Ghosh, Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int. J. Plast. 115, 268–292 (2019)

    Article  CAS  Google Scholar 

  32. M. Echlin, W. Lenthe, T. Pollock, Three-dimensional sampling of material structure for property modeling and design. Int. Mater. Manuf. Innov. 3(1), 21–34 (2014)

    Google Scholar 

  33. M.A. Groeber, M. Jackson, DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 5 (2014)

    Google Scholar 

  34. M.A. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk, A framework for automated analysis and representation of 3D polycrystalline microstructures, Part 1: statistical characterization. Acta Mat. 56(6), 1257–1273 (2008)

    Article  CAS  Google Scholar 

  35. M.A. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk, A framework for automated analysis and representation of 3D polycrystalline microstructures, Part 2: synthetic structure generation. Acta Mat. 56(6), 1274–1287 (2008)

    Article  CAS  Google Scholar 

  36. Y. Bhandari, S. Sarkar, M.A. Groeber, M.D. Uchic, D. Dimiduk, S. Ghosh, 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput. Mater. Sci. 41, 222–235 (2007)

    Article  CAS  Google Scholar 

  37. S. Niezgoda, D. Turner, D. Fullwood, S. Kalidindi, Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mat. 58, 4432–4445 (2010)

    Article  CAS  Google Scholar 

  38. D.M. Saylor, J. Fridy, B.S. El-Dasher, K.-Y. Jung, A.D. Rollett, Statistically representative 3D microstructures based on orthogonal observation sections. Met. Mat. Trans. A 35, 1969–1979 (2004)

    Article  Google Scholar 

  39. Y. Jiao, F.H. Stillinger, S. Torquato, Modeling heterogeneous materials via two-point correlation functions: basic principles. Phys. Rev. E 76(3), 031110 (2007)

    Google Scholar 

  40. Y. Jiao, E. Padilla, N. Chawla, Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction. Acta Mat. 61(9), 3370–3377 (2013)

    Article  CAS  Google Scholar 

  41. G. Saheli, H. Garmestani, B.L. Adams, Microstructure design of a two phase composite using two-point correlation functions. J. Comput.-Aided Mater. Des. 11(2), 103–115 (2004)

    Article  Google Scholar 

  42. S. Torquato, G. Stell, Microstructure of two-phase random media. I. the n-point probability functions. J. Chem. Phys. 77(4), 2071–2077 (1982)

    CAS  Google Scholar 

  43. J. MacSleyne, M.D. Uchic, J.P. Simmons, M. De Graef, Three-dimensional analysis of secondary γ’ precipitates in René-88 dt and UMF-20 superalloys. Acta Mat. 57(20), 6251–6267 (2009)

    Article  CAS  Google Scholar 

  44. M. Kühbach, G. Gottstein, L.A. Barrales-Mora, A statistical ensemble cellular automaton microstructure model for primary recrystallization. Acta Mater. 107, 366–376 (2016)

    Article  CAS  Google Scholar 

  45. C. Schwarze, R.D. Kamachali, M. Kühbach, C. Mießen, M. Tegeler, L. Barrales-Mora, I. Steinbach, G. Gottstein, Computationally efficient phase-field simulation studies using RVE sampling and statistical analysis. Comp. Mater. Sci. 147, 204–216 (2018)

    Article  CAS  Google Scholar 

  46. W. Lenthe, Twin Related Domains in Polycrystalline Nickel-Base Superalloys: 3D Structure and Fatigue. Ph.D. thesis, University of California- Santa Barbara (2017)

    Google Scholar 

  47. M. Pinz, G. Weber, S. Ghosh, Generating 3D virtual microstructures and statistically equivalent representative volume elements for intragranular nickel-based superalloy microstructures. Submitted 2019.

    Google Scholar 

  48. M.P. Echlin, A. Mottura, C.J. Torbet, T.M. Pollock, A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83(2), 023701 (2012)

    Google Scholar 

  49. F. Meyer. Topographic distance and watershed lines. Signal Process. 38(1), 113–125 (1994)

    Article  Google Scholar 

  50. S.J. Ahn, W. Rauh, H.-J. Warnecke, Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recogn. 34(12), 2283–2303 (2001)

    Article  Google Scholar 

  51. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)

    Google Scholar 

  52. W.W. Daniel, Kolmogorov-Smirnov One-Sample Test (PWS-Kent, Boston, 1990)

    Google Scholar 

  53. Simulation Modeling Suite (Simmetrix Inc., 2015). http://www.simmetrix.com/

  54. G. Casella, C.P. Robert, M.T. Wells, Generalized Accept-Reject Sampling Schemes Lecture Notes: Monograph Series 45(Institute of Mathematical Statistics. Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd.), 342–347 (2004)

    Google Scholar 

  55. J.K. Mackenzie, 2nd Paper on statistics associated with the random disorientation of cubes. Biometrika 45, 229–240 (1958)

    Article  Google Scholar 

  56. Z. Alam, D. Eastman, M. Jo, K. Hemker, Development of a high-temperature tensile tester for micromechanical characterization of materials supporting meso-scale ICME models. JOM 68(11), 2754–2760 (2016)

    Article  CAS  Google Scholar 

  57. J.C. Stinville, N. Vanderesse, F. Bridier, P. Bocher, T.M. Pollock, High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mat. 98(1), 29–42 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University awarded by the AFOSR/RSL Computational Mathematics Program (Manager Dr. A. Sayir) and AFRL/RX (Monitors Drs. C. Woodward and C. Przybyla). These sponsorships are gratefully acknowledged. Computing support by the Homewood High Performance Compute Cluster (HHPC) and Maryland Advanced Research Computing Center (MARCC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S. et al. (2020). Multi-scale Microstructure and Property-Based Statistically Equivalent RVEs for Modeling Nickel-Based Superalloys. In: Ghosh, S., Woodward, C., Przybyla, C. (eds) Integrated Computational Materials Engineering (ICME). Springer, Cham. https://doi.org/10.1007/978-3-030-40562-5_3

Download citation

Publish with us

Policies and ethics