Skip to main content
Log in

Statistically representative three-dimensional microstructures based on orthogonal observation sections

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Techniques are described that have been used to create a statistically representative three-dimensional model microstructure for input into computer simulations using the geometric and crystallographic observations from two orthogonal sections through an aluminum polycrystal. Orientation maps collected on the observation planes are used to characterize the sizes, shapes, and orientations of grains. Using a voxel-based tessellation technique, a microstructure is generated with grains whose size and shape are constructed to conform to those measured experimentally. Orientations are then overlaid on the grain structure such that distribution of grain orientations and the nearest-neighbor relationships, specified by the distribution of relative misorientations across grain boundaries, match the experimentally measured distributions. The techniques are applicable to polycrystalline materials with sufficiently compact grain shapes and can also be used to controllably generate a wide variety of hypothetical microstructures for initial states in computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  2. V.R. Vedula, S.J. Glass, D.M. Saylor, G.S. Rohrer, W.C. Carter, S.A. Langer, and E.R. Fuller, Jr.: J. Am. Ceram. Soc., 2001, vol. 84, pp. 2947–54.

    Article  CAS  Google Scholar 

  3. Y. Fang, K. Ravi-Chandar, and K.W. White: J. Am. Ceram. Soc., 2002, vol. 85, pp. 1783–87.

    Article  CAS  Google Scholar 

  4. T. Weiss, S. Siegesmund, and E.R. Fuller, Jr.: in Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Geological Society of London, Special Publication No. 205, S. Siegesmund, A. Vollbrecht, and T. Weiss, eds., Geological Society of London, London, 2002, pp. 81–94.

    Google Scholar 

  5. T. Baudin, P. Paillard, and R. Penelle: Scripta Mater., 1999, vol. 40, pp. 1111–16.

    Article  CAS  Google Scholar 

  6. S.W. Cheong, E.J. Hilinski, and A.D. Rollett: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1321–27.

    CAS  Google Scholar 

  7. S.F. Nielsen, E.M. Lauridsen, D. Juul Jensen, H.F. Poulsen: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 179–81.

    Google Scholar 

  8. B.C. Larsen, W. Yang, G.E. Ice, J.D. Budal, and J.Z. Tischier: Nature, 2002, vol. 415, pp. 887–90.

    Article  CAS  Google Scholar 

  9. K.W. Mahin, K. Hanson, and J.W. Morris, Jr.: Acta. Met., vol. 28, pp. 443–53.

  10. O. Ito and E.R. Fuller, Jr.: Acta Metall. Mater., 1993, vol. 41, pp. 191–98.

    Article  Google Scholar 

  11. M. Miodownik, A.W. Godfrey, E.A. Holm, and D.A. Hughes: Acta Mater., 1999, vol. 47, pp. 2661–68.

    Article  CAS  Google Scholar 

  12. B.L. Adams and T. Olson: Progr. Mater. Sci., 1998, vol. 43, pp. 1–87.

    Article  CAS  Google Scholar 

  13. W.K. Pratt: Digital Image Processing, John Wiley & Sons Inc., New York, NY, 2001, pp. 597–607.

    Google Scholar 

  14. G.B. Thomas, Jr.: Calculus and Analytic Geometry, Addison-Wesley Publishing Company, Inc., Reading, MA, 1968, p. 414.

    Google Scholar 

  15. N.L. Johnson and F.C. Leone: Statistics and Experimental Design in Engineering and the Physical Sciences, John Wiley & Sons Inc., New York, NY, 1964, p. 41.

    Google Scholar 

  16. W.H. Press, W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery: Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed., Cambridge University Press, New York, NY, 2002, pp. 448–55.

    Google Scholar 

  17. K. Shimada and D. Gossard: ACM 3rd Symp. on Solid Modeling and Applications, 1995, pp. 409–19.

  18. F. Frank: Metall. Trans. A, 1988, vol. 19A, pp. 403–08.

    Google Scholar 

  19. A. Morawiec: Acta Cryst., 1997, vol. A53, pp. 273–85.

    CAS  Google Scholar 

  20. M.P. Anderson, G.S. Grest, and D.J. Srolovitz: Scripta Metall., 1985, vol. 19, pp. 225–30.

    Article  CAS  Google Scholar 

  21. D.M. Saylor, A. Morawiec, G.S. Rohrer: J. Am. Cer. Soc., 2002, vol. 85, pp. 3081–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium “Characterization and Representation of Material Microstructures in 3-D” held October 8–10, 2002, in Columbus, OH, under the auspices of ASM International’s Phase Transformations committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saylor, D.M., Fridy, J., El-Dasher, B.S. et al. Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall Mater Trans A 35, 1969–1979 (2004). https://doi.org/10.1007/s11661-004-0146-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0146-0

Keywords

Navigation