Skip to main content

Inductivity: Bioactive Agents

  • Chapter
  • First Online:
Bone Cement

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 296 Accesses

Abstract

In bone tissue engineering, besides osteoconductivity and productivity, inducing the cells surrounded implanted scaffold via bioactive agents is crucial. To apply this property to bone tissue engineering, researchers are inspired by natural events which are occurring during bone healing. In addition to the role of various cells involved in bone healing, some bioactive agents such as inflammatory, angiogenic, and osteogenic growth factor take part in the process and control the events. Based on this strategy, in this chapter, the bone healing process is discussed in the context of employing various bioactive agents, including growth factors, drugs, and nucleic acids. Furthermore, the incorporation methods of the agents into a scaffold are investigated. In the last part of this chapter, common challenges that deal with bone tissue engineering are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10, S96–S101 (2001). https://doi.org/10.1007/s005860100282

    Article  Google Scholar 

  2. C. Laurencin, Y. Khan, S.F. El-Amin, Bone graft substitutes. Expert Rev. Med. Devices 3, 49–57 (2006). https://doi.org/10.1586/17434440.3.1.49

    Article  Google Scholar 

  3. R.J. Miron, Y.F. Zhang, Osteoinduction: a review of old concepts with new standards. J. Dent. Res. 91, 736–744 (2012). https://doi.org/10.1177/0022034511435260

    Article  Google Scholar 

  4. R. Chen, J. Wang, C. Liu, Biomaterials act as enhancers of growth factors in bone regeneration. Adv. Funct. Mater. 26, 8810–8823 (2016). https://doi.org/10.1002/adfm.201603197

    Article  Google Scholar 

  5. T.N. Vo, F.K. Kasper, A.G. Mikos, Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv. Drug Deliv. Rev. 64, 1292–1309 (2012). https://doi.org/10.1016/j.addr.2012.01.016

    Article  Google Scholar 

  6. P.S. Lienemann, M.P. Lutolf, M. Ehrbar, Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv. Drug Deliv. Rev. 64, 1078–1089 (2012). https://doi.org/10.1016/j.addr.2012.03.010

    Article  Google Scholar 

  7. S. Qu, J. Weng, K. Duan, Y. Liu, Drug-loading calcium phosphate cements for medical applications. Dev. Appl. Calcium Phosphate Bone Cem., 299–332 (2018). https://doi.org/10.1007/978-981-10-5975-9_7

    Google Scholar 

  8. S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8, 1401–1421 (2012). https://doi.org/10.1016/j.actbio.2011.11.017

    Article  Google Scholar 

  9. E.M.M. Van Lieshout, V. Alt, Bone graft substitutes and bone morphogenetic proteins for osteoporotic fractures: what is the evidence? Injury 47, S43–S46 (2016). https://doi.org/10.1016/S0020-1383(16)30011-0

    Article  Google Scholar 

  10. D.H.R. Kempen, L.B. Creemers, J. Alblas, L. Lu, A.J. Verbout, M.J. Yaszemski, W.J.A. Dhert, Growth factor interactions in bone regeneration. Tissue Eng. Part B Rev. 16, 551–566 (2010). https://doi.org/10.1089/ten.teb.2010.0176

    Article  Google Scholar 

  11. T. Kang, X. Hua, P. Liang, M. Rao, Q. Wang, C. Quan, C. Zhang, Q. Jiang, Synergistic reinforcement of polydopamine-coated hydroxyapatite and BMP2 biomimetic peptide on the bioactivity of PMMA-based cement. Compos. Sci. Technol. 123, 232–240 (2016). https://doi.org/10.1016/j.compscitech.2016.01.002

    Article  Google Scholar 

  12. V. Devescovi, E. Leonardi, G. Ciapetti, E. Cenni, Growth factors in bone repair. Chir. Organi. Mov. 92, 161–168 (2008). https://doi.org/10.1007/s12306-008-0064-1

    Article  Google Scholar 

  13. J. Zeng, J. Lin, G. Yao, K. Kong, X. Wang, Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. J. Orthop. Surg. Res. 12, 102 (2017). https://doi.org/10.1186/s13018-017-0598-8

    Article  Google Scholar 

  14. F. Gunnella, E. Kunisch, M. Bungartz, S. Maenz, V. Horbert, L. Xin, J. Mika, J. Borowski, S. Bischoff, H. Schubert, P. Hortschansky, A. Sachse, B. Illerhaus, J. Günster, J. Bossert, K.D. Jandt, F. Plöger, R.W. Kinne, O. Brinkmann, Low-dose BMP-2 is sufficient to enhance the bone formation induced by an injectable, PLGA fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. Spine J. 17, 1699–1711 (2017). https://doi.org/10.1016/j.spinee.2017.06.005

    Article  Google Scholar 

  15. A.K. Teotia, A. Gupta, D.B. Raina, L. Lidgren, A. Kumar, Gelatin-modified bone substitute with bioactive molecules enhance cellular interactions and bone regeneration. ACS Appl. Mater. Interfaces. 8, 10775–10787 (2016). https://doi.org/10.1021/acsami.6b02145

    Article  Google Scholar 

  16. G.H. Lee, P. Makkar, K. Paul, B. Lee, Incorporation of BMP-2 loaded collagen conjugated BCP granules in calcium phosphate cement based injectable bone substitutes for improved bone regeneration. Mater. Sci. Eng., C 77, 713–724 (2017). https://doi.org/10.1016/j.msec.2017.03.296

    Article  Google Scholar 

  17. S. Ding, J. Zhang, Y. Tian, B. Huang, Y. Yuan, C. Liu, Magnesium modification up-regulates the bioactivity of bone morphogenetic protein-2 upon calcium phosphate cement via enhanced BMP receptor recognition and Smad signaling pathway. Colloids Surf. B Biointerfaces 145, 140–151 (2016). https://doi.org/10.1016/j.colsurfb.2016.04.045

    Article  ADS  Google Scholar 

  18. B. Huang, Y. Tian, W. Zhang, Y. Ma, Y. Yuan, C. Liu, Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA. Colloids Surf. B Biointerfaces 159, 684–695 (2017). https://doi.org/10.1016/j.colsurfb.2017.06.041

    Article  Google Scholar 

  19. B. Huang, Z. Wu, S. Ding, Y. Yuan, C. Liu, Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Acta Biomater. 71, 184–199 (2018). https://doi.org/10.1016/j.actbio.2018.01.004

    Article  Google Scholar 

  20. R. Liu, X. Wu, J. Li, X. Liu, Z. Huang, Y. Yuan, X. Gao, B. Lin, B. Yu, Y. Chen, The promotion of bone tissue regeneration by BMP2-derived peptide P24-loaded calcium phosphate cement microspheres. Ceram. Int. 42, 3177–3189 (2016). https://doi.org/10.1016/j.ceramint.2015.10.108

    Article  Google Scholar 

  21. J. Baek, H.-D. Jung, T.-S. Jang, S.W. Kim, M.-H. Kang, H.-E. Kim, Y.-H. Koh, Synthesis and evaluation of bone morphogenetic protein (BMP)-loaded hydroxyapatite microspheres for enhanced bone regeneration. Ceram. Int. 42, 7748–7756 (2016). https://doi.org/10.1016/j.ceramint.2016.01.189

    Article  Google Scholar 

  22. J.C. da Silva de Oliveira, E.R. Luvizuto, C.K. Sonoda, R. Okamoto, I.R. Garcia-Junior, Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac. Surg. 21, 247–258 (2017). https://doi.org/10.1007/s10006-017-0624-3

    Article  Google Scholar 

  23. R.O. Huse, P. Quinten Ruhe, J.G.C. Wolke, J.A. Jansen, The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute. An experimental study in rats. Clin. Oral Implants Res. 15, 741–749 (2004). https://doi.org/10.1111/j.1600-0501.2004.01068.x

    Article  Google Scholar 

  24. A. Plachokova, D. Link, J. van den Dolder, J. van den Beucken, J. Jansen, Bone regenerative properties of injectable PGLA–CaP composite with TGF-β1 in a rat augmentation model. J. Tissue Eng. Regen. Med. 1, 457–464 (2007). https://doi.org/10.1002/term.59

    Article  Google Scholar 

  25. D.P. Link, J. van den Dolder, J.J. van den Beucken, J.G. Wolke, A.G. Mikos, J.A. Jansen, Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials 29, 675–682 (2008). https://doi.org/10.1016/j.biomaterials.2007.10.029

    Article  Google Scholar 

  26. S.-H. Lee, H. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 59, 339–359 (2007). https://doi.org/10.1016/j.addr.2007.03.016

    Article  Google Scholar 

  27. D.A. Oortgiesen, X.F. Walboomers, A.L. Bronckers, G.J. Meijer, J.A. Jansen, Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2. J. Tissue Eng. Regen. Med. 8, 202–209 (2014). https://doi.org/10.1002/term.1514

    Article  Google Scholar 

  28. R. Tsuboi, J.-I. Sasaki, H. Kitagawa, I. Yoshimoto, F. Takeshige, S. Imazato, Development of a novel dental resin cement incorporating FGF-2-loaded polymer particles with the ability to promote tissue regeneration. Dent. Mater. 34, 641–648 (2018). https://doi.org/10.1016/j.dental.2018.01.007

    Article  Google Scholar 

  29. S. Vahabzadeh, A. Bandyopadhyay, S. Bose, R. Mandal, S.K. Nandi, IGF-loaded silicon and zinc doped brushite cement: physico-mechanical characterization and in vivo osteogenesis evaluation. Integr. Biol. 7, 1561–1573 (2015). https://doi.org/10.1039/c5ib00114e

    Article  Google Scholar 

  30. A. Lode, C. Wolf-Brandstetter, A. Reinstorf, A. Bernhardt, U. König, W. Pompe, M. Gelinsky, Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity. J. Biomed. Mater. Res., Part A 81A, 474–483 (2007). https://doi.org/10.1002/jbm.a.31024

    Article  Google Scholar 

  31. A. Lode, A. Reinstorf, A. Bernhardt, C. Wolf-Brandstetter, U. König, M. Gelinsky, Heparin modification of calcium phosphate bone cements for VEGF functionalization. J. Biomed. Mater. Res., Part A 86A, 749–759 (2008). https://doi.org/10.1002/jbm.a.31581

    Article  Google Scholar 

  32. A.R. Akkineni, Y. Luo, M. Schumacher, B. Nies, A. Lode, M. Gelinsky, 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 27, 264–274 (2015). https://doi.org/10.1016/j.actbio.2015.08.036

    Article  Google Scholar 

  33. T. Ahlfeld, A.R. Akkineni, Y. Förster, T. Köhler, S. Knaack, M. Gelinsky, A. Lode, Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann. Biomed. Eng. 45, 224–236 (2017). https://doi.org/10.1007/s10439-016-1685-4

    Article  Google Scholar 

  34. T. Ahlfeld, F.P. Schuster, Y. Förster, M. Quade, A.R. Akkineni, C. Rentsch, S. Rammelt, M. Gelinsky, A. Lode, 3D plotted biphasic bone scaffolds for growth factor delivery: biological characterization in vitro and in vivo. Adv. Healthc. Mater. 8, 1801512 (2019). https://doi.org/10.1002/adhm.201801512

    Article  Google Scholar 

  35. M. Mehta, K. Schmidt-Bleek, G.N. Duda, D.J. Mooney, Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv. Drug Deliv. Rev. 64, 1257–1276 (2012). https://doi.org/10.1016/j.addr.2012.05.006

    Article  Google Scholar 

  36. J.A. Jansen, J.W.M. Vehof, P.Q. Ruhé, H. Kroeze-Deutman, Y. Kuboki, H. Takita, E.L. Hedberg, A.G. Mikos, Growth factor-loaded scaffolds for bone engineering. J. Control. Release 101, 127–136 (2005). https://doi.org/10.1016/j.jconrel.2004.07.005

    Article  Google Scholar 

  37. E.A. Bayer, J. Jordan, A. Roy, R. Gottardi, M.V. Fedorchak, P.N. Kumta, S.R. Little, Programmed platelet-derived growth factor-BB and bone morphogenetic protein-2 delivery from a hybrid calcium phosphate/alginate scaffold. Tissue Eng. Part A 23, 1382–1393 (2017). https://doi.org/10.1089/ten.tea.2017.0027

    Article  Google Scholar 

  38. R. Reyes, B. De la Riva, A. Delgado, A. Hernández, E. Sánchez, C. Évora, Effect of triple growth factor controlled delivery by a brushite–PLGA system on a bone defect. Injury 43, 334–342 (2012). https://doi.org/10.1016/j.injury.2011.10.008

    Article  Google Scholar 

  39. R.P.F. Lanao, J.W.M. Hoekstra, J.G.C. Wolke, S.C.G. Leeuwenburgh, A.S. Plachokova, O.C. Boerman, J.J.J.P. van den Beucken, J.A. Jansen, Bone regenerative properties of injectable calcium phosphate/PLGA cement in an alveolar bone defect. Key Eng. Mater. 529–530, 300–303 (2012). https://doi.org/10.4028/www.scientific.net/KEM.529-530.300

    Article  Google Scholar 

  40. R.P. Félix Lanao, J.W.M. Hoekstra, J.G.C. Wolke, S.C.G. Leeuwenburgh, A.S. Plachokova, O.C. Boerman, J.J.J.P. van den Beucken, J.A. Jansen, Porous calcium phosphate cement for alveolar bone regeneration. J. Tissue Eng. Regen. Med. 8, 473–482 (2014). https://doi.org/10.1002/term.1546

    Article  Google Scholar 

  41. Y.-C. Chiang, H.-H. Chang, C.-C. Wong, Y.-P. Wang, Y.-L. Wang, W.-H. Huang, C.-P. Lin, Nanocrystalline calcium sulfate/hydroxyapatite biphasic compound as a TGF-β1/VEGF reservoir for vital pulp therapy. Dent. Mater. 32, 1197–1208 (2016). https://doi.org/10.1016/j.dental.2016.06.013

    Article  Google Scholar 

  42. K. Lee, M.D. Weir, E. Lippens, M. Mehta, P. Wang, G.N. Duda, W.S. Kim, D.J. Mooney, H.H.K. Xu, Bone regeneration via novel macroporous CPC scaffolds in critical-sized cranial defects in rats. Dent. Mater. 30, e199–e207 (2014). https://doi.org/10.1016/j.dental.2014.03.008

    Article  Google Scholar 

  43. M.-P. Ginebra, C. Canal, M. Espanol, D. Pastorino, E.B. Montufar, Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev. 64, 1090–1110 (2012). https://doi.org/10.1016/j.addr.2012.01.008

    Article  Google Scholar 

  44. M.-P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials 27, 2171–2177 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.023

    Article  Google Scholar 

  45. V. Mouriño, A.R. Boccaccini, Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J. R. Soc. Interface 7, 209–227 (2010). https://doi.org/10.1098/rsif.2009.0379

    Article  Google Scholar 

  46. A. Shuid, N. Ibrahim, M. Amin, I. Mohamed, Drug delivery systems for prevention and treatment of osteoporotic fracture. Curr. Drug Targets 14, 1558–1564 (2013). https://doi.org/10.2174/1389450114666131108153905

    Article  Google Scholar 

  47. R.M. Raftery, D.P. Walsh, I.M. Castaño, A. Heise, G.P. Duffy, S.-A. Cryan, F.J. O’Brien, Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv. Mater. 28, 5447–5469 (2016). https://doi.org/10.1002/adma.201505088

    Article  Google Scholar 

  48. Y. Zhang, W. Ma, Y. Zhan, C. Mao, X. Shao, X. Xie, X. Wei, Y. Lin, Nucleic acids and analogs for bone regeneration. Bone Res. 6, 37 (2018). https://doi.org/10.1038/s41413-018-0042-7

    Article  Google Scholar 

  49. E.R. Balmayor, C.H. Evans, RNA therapeutics for tissue engineering. Tissue Eng. Part A 25, 9–11 (2019). https://doi.org/10.1089/ten.tea.2018.0315

    Article  Google Scholar 

  50. A. Ho-Shui-Ling, J. Bolander, L.E. Rustom, A.W. Johnson, F.P. Luyten, C. Picart, Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018). https://doi.org/10.1016/j.biomaterials.2018.07.017

    Article  Google Scholar 

  51. V. Martin, A. Bettencourt, Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Mater. Sci. Eng., C 82, 363–371 (2018). https://doi.org/10.1016/j.msec.2017.04.038

    Article  Google Scholar 

  52. P.S. Babo, V.E. Santo, M.E. Gomes, R.L. Reis, Development of an injectable calcium phosphate/hyaluronic acid microparticles system for platelet lysate sustained delivery aiming bone regeneration. Macromol. Biosci. 16, 1662–1677 (2016). https://doi.org/10.1002/mabi.201600141

    Article  Google Scholar 

  53. E. Nyberg, C. Holmes, T. Witham, W.L. Grayson, Growth factor-eluting technologies for bone tissue engineering. Drug Deliv. Transl. Res. 6, 184–194 (2016). https://doi.org/10.1007/s13346-015-0233-3

    Article  Google Scholar 

  54. V. Luginbuehl, L. Meinel, H.P. Merkle, B. Gander, Localized delivery of growth factors for bone repair. Eur. J. Pharm. Biopharm. 58, 197–208 (2004). https://doi.org/10.1016/j.ejpb.2004.03.004

    Article  Google Scholar 

  55. L. Roseti, V. Parisi, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng., C 78, 1246–1262 (2017). https://doi.org/10.1016/j.msec.2017.05.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Rezaie, H., Esnaashary, M., Karfarma, M., Öchsner, A. (2020). Inductivity: Bioactive Agents. In: Bone Cement. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-39716-6_4

Download citation

Publish with us

Policies and ethics